# KADI SARVA VISHWAVIDYALAYA, GANDHINAGAR



# M.Sc. BIOTECHNOLOGY

# SYLLABUS

W.E.F. JULY 2017

# Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Biotechnology Course Structure for M.Sc. Biotechnology Programme SEMESTER- 1

| a    | D     | <b>TD:</b> (1       | 10 <u> </u> |         | _     | 3.4.1   |           |           |
|------|-------|---------------------|-------------|---------|-------|---------|-----------|-----------|
| Sem. | Paper | Title               | Hours       | Credits | Exam  | Mid     | External  | Total     |
|      |       |                     | / week      |         | hours | Term    | marks     | marks     |
|      |       |                     |             |         |       | marks   |           |           |
| 1    | BTCT  | Molecular Biology   | 4           | 4       | 3     | Max.:30 | Max.:70   | 100       |
|      | 101   |                     |             |         |       | Min: 12 | Min: 28   |           |
| 1    | BTCT  | Principles of       | 4           | 4       | 3     | Max.:30 | Max.:70   | 100       |
|      | 102   | Biochemistry and    |             |         |       | Min: 12 | Min: 28   |           |
|      |       | Enzymology          |             |         |       |         |           |           |
| 1    | BTCT  | Bioinstrumentation  | 4           | 4       | 3     | Max.:30 | Max.:70   | 100       |
|      | 103   |                     |             |         |       | Min: 12 | Min: 28   |           |
| 1    | BTCT  | Cell Biology and    | 4           | 4       | 3     | Max.:30 | Max.:70   | 100       |
|      | 104   | Cellular            |             |         |       | Min: 12 | Min: 28   |           |
|      |       | Physiology          |             |         |       |         |           |           |
| 1    | BTCP  | Practicals related  | 8           | 8       | 12    |         | Max.: 200 | Max.: 200 |
|      | 105   | to theory papers in |             |         |       |         | Min: 80   | Min:80    |
|      |       | the semester        |             |         |       |         |           |           |
|      |       | Total credits       |             | 24      |       |         |           |           |

# **SEMESTER-2**

| 2 | BTCT     | Genetic          | 4 | 4  | 3  | Max.:30 | Max.:70   | 100       |
|---|----------|------------------|---|----|----|---------|-----------|-----------|
|   | 201      | Engineering      |   |    |    | Min: 12 | Min: 28   |           |
| 2 | BTCT     | Systematics of   | 4 | 4  | 3  | Max.:30 | Max.:70   | 100       |
|   | 202      | Microbial Life   |   |    |    | Min: 12 | Min: 28   |           |
| 2 | BTCT     | Research         | 4 | 4  | 3  | Max.:30 | Max.:70   | 100       |
|   | 203      | Methodology      |   |    |    | Min: 12 | Min: 28   |           |
|   |          | and Technical    |   |    |    |         |           |           |
|   |          | Writing in       |   |    |    |         |           |           |
|   |          | Biotechnology    |   |    |    |         |           |           |
| 2 | BTCT     | Bioprocess       | 4 | 4  | 3  | Max.:30 | Max.:70   | 100       |
|   | 204      | Engineering      |   |    |    | Min: 12 | Min: 28   |           |
| 2 | BTCP 205 | Practicals       | 8 | 8  | 12 |         | Max.: 200 | Max.: 200 |
|   |          | related to core  |   |    |    |         | Min: 80   | Min: 80   |
|   |          | theory papers in |   |    |    |         |           |           |
|   |          | the semester     |   |    |    |         |           |           |
|   |          | Total credits    |   | 24 |    |         |           |           |

# Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Biotechnology Course Structure for M.Sc. Biotechnology Programme SEMESTER-3

|      | SEMIESTER-3 |                      |        |         |       |         |          |        |
|------|-------------|----------------------|--------|---------|-------|---------|----------|--------|
| Sem. | Paper       | Title                | Hours/ | Credits | Exam  | Mid     | External | Total  |
|      |             |                      | week   |         | hours | Term    | marks    | marks  |
|      |             |                      |        |         |       | marks   |          |        |
| 3    | BTCT        | Pharmaceutical       | 4      | 4       | 3     | Max.:30 | Max.:70  | 100    |
|      | 301         | Biotechnology        |        |         |       | Min: 12 | Min: 28  |        |
| 3    | BTCT        | Immunology           | 4      | 4       | 3     | Max.:30 | Max.:70  | 100    |
|      | 302         |                      |        |         |       | Min: 12 | Min: 28  |        |
| 3    | BTCT        | Microbial            | 4      | 4       | 3     | Max.:30 | Max.:70  | 100    |
|      | 303         | Technology           |        |         |       | Min: 12 | Min: 28  |        |
| 3    | BTCT        | Plant                | 4      | 4       | 3     | Max.:30 | Max.:70  | 100    |
|      | 304         | Biotechnology        |        |         |       | Min: 12 | Min: 28  |        |
|      |             | and Animal           |        |         |       |         |          |        |
|      |             | Cell Science         |        |         |       |         |          |        |
| 3    | BTCP        | Practicals           | 16     | 8       | 12    |         | Max.:    | Max.:  |
|      | 305         | related to           |        |         |       |         | 200      | 200    |
|      |             | theory papers        |        |         |       |         | Min: 80  | Min:80 |
|      |             | in the semester      |        |         |       |         |          |        |
| 3    | BTET        | Biostatistics        | 2      | 2       | 2     | Max.:15 | Max.:35  | 50     |
|      | 306A        |                      |        |         |       | Min: 6  | Min: 14  |        |
| 3    | BTET        | Genomics             | 2      | 2       | 2     | Max.:15 | Max.:35  | 50     |
|      | 306B        |                      |        |         |       | Min: 6  | Min: 14  |        |
|      |             | <b>Total credits</b> |        | 26      |       |         |          | 650    |

# **SEMESTER-4**

| 4 | BTCT     | Bioinformatics       | 4 | 4  | 3 | Max.:30 | Max.:70   | 100      |
|---|----------|----------------------|---|----|---|---------|-----------|----------|
|   | 401      |                      |   |    |   | Min: 12 | Min: 28   |          |
| 4 | BTCT     | Environmental        | 4 | 4  | 3 | Max.:30 | Max.:70   | 100      |
|   | 402      | Biotechnology        |   |    |   | Min: 12 | Min: 28   |          |
| 4 | BTCP     | Practicals           | 8 | 4  | 6 |         | Max.: 100 | Max.:100 |
|   | 403      | related to           |   |    |   |         | Min: 40   | Min: 40  |
|   |          | theory papers        |   |    |   |         |           |          |
|   |          | in the semester      |   |    |   |         |           |          |
| 4 | BTDI 404 | Dissertation/        | - | 12 | - | -       | Max.:300  | Max.300  |
|   |          | Industrial           |   |    |   |         | Min: 120  | Min: 120 |
|   |          | Training for 8       |   |    |   |         |           |          |
|   |          | weeks                |   |    |   |         |           |          |
| 4 | BTET     | Biotechnology        | 2 | 2  | 2 | Max.:15 | Max.:35   | 50       |
|   | 405A     | Business             |   |    |   | Min: 6  | Min: 14   |          |
|   |          | Management           |   |    |   |         |           |          |
| 4 | BTET     | Proteomics           | 2 | 2  | 2 | Max.:15 | Max.:35   | 50       |
|   | 405B     |                      |   |    |   | Min: 6  | Min: 14   |          |
|   |          | <b>Total credits</b> |   | 26 |   |         |           | 650      |

% - Weightage of marks in percentage, Hrs- Number of teaching hours per week. BTCT-Biotechnology Core Theory, BTCP- Biotechnology Core Practical, BTET- Biotechnology Elective Theory, BTDI – Biotechnology Dissertation/ Industrial Training

# **General instructions**

1. The medium of instruction will be English for theory and practical courses.

2. There will be 4 lectures, each of 55 minutes duration / week / theory paper / semester.

3. There will be "*four*" units in each core theory paper. There will be 48 hrs. of theory teaching / paper / semester. Each theory paper / semester will be of 100 marks. There will be 30 marks for midterm evaluation and 70 marks for external evaluation.

4. There will be "*two*" units in each elective theory paper. There will be 24 hrs. of theory teaching / paper / semester. Each theory paper / semester will be of 50 marks. There will be 15 marks for midterm evaluation and 35 marks for external evaluation.

5. In semesters 1, 2 and 3, there will be 16 practical hours/ week / paper / batch. Each practical paper / semester will be of 200 marks. There is no midterm evaluation for practical work.

6. In semester 4, there will be 8 practical hours/ week / paper / batch and the practical paper in semester 4 will be of 100 marks. There is no midterm evaluation for practical work.

7. Dissertation and Industrial Training in semester 4 shall be evaluated for 300 marks. Work carried out and written report carry 200 marks, presentation carries 100marks.

Unit wise marks distribution and the question paper scheme of End Term Core Theory Papers

| Section A | Questions from each Unit | Questions to be answered              | Marks |
|-----------|--------------------------|---------------------------------------|-------|
| Unit 1    | Five MCQ,                | MCQ-5                                 | 35    |
|           | Two 5M questions,        | 5M questions -1                       | Marks |
|           | Four 3M questions        | 3M questions $-4$                     |       |
| Unit 2    | Five MCQ,                | MCQ-5                                 |       |
|           | Two 5M questions,        | 5M questions -1                       |       |
|           | Four 3M questions        | 3M questions –(Minimum-1 & Maximum-4) |       |
| Section B | Questions from each Unit | Questions to be answered              | Marks |
| Unit 3    | Five MCQ,                | MCQ-5                                 | 35    |
|           | Two 5M questions,        | 5M questions -1                       | Marks |
|           | Four 3M questions        | 3M questions –(Minimum-1 & Maximum-4) |       |
| Unit 4    | Five MCQ,                | MCQ-5                                 |       |
|           | Two 5M questions,        | 5M questions -1                       |       |
|           | Four 3M questions        | 3M questions –(Minimum-1 & Maximum-4) |       |
|           |                          | Total                                 | 70    |
|           |                          |                                       | Marks |

Unit wise marks distribution and the question paper scheme for End Term Elective Theory Paper

| Section A | <b>Questions from each Unit</b> | Questions to be answered             | Marks |
|-----------|---------------------------------|--------------------------------------|-------|
| Unit 1    | Five MCQ,                       | MCQ-5                                |       |
|           | Two 5M questions,               | 5M questions -1                      |       |
|           | Four 3M questions               | 3M questions –(Minimum-1 & Maximum-4 |       |
| Unit 2    | Five MCQ,                       | MCQ-5                                |       |
|           | Two 5M questions,               | 5M questions -1                      |       |
|           | Four 3M questions               | 3M questions –(Minimum-1 & Maximum-4 |       |
|           |                                 | Total                                | 35    |
|           |                                 |                                      | Marks |

**M.Sc. Biotechnology, I Year Course Description:** This course is designed to enable students to acquire understanding of fundamentals of Biotechnology and applications of various Biotechnological resources and techniques. It also provides opportunities for utilizing Biotechnology products for the benefit of mankind. The course also provides practical training on Biotechnological resources, techniques and processes for creation of trained manpower for adsorption in upcoming Biotechnology Industry.

| Paper     | Title of Paper                                               | Credits |
|-----------|--------------------------------------------------------------|---------|
| Core      | SEMESTER-1                                                   |         |
| BTCT 101  | Molecular Biology                                            | 4       |
| BTCT 102  | Principles of Biochemistry and Enzymology                    | 4       |
| BTCT 103  | Bioinstrumentation                                           | 4       |
| BTCT 104  | Cell Biology and Cellular Physiology                         | 4       |
| BTCP 105  | Practical work related to core theory papers in the semester | 8       |
|           | SEMESTER-2                                                   |         |
| Core      |                                                              |         |
| BTCT 201  | Genetic Engineering                                          | 4       |
| BTCT 202  | Systematics of Microbial Life                                | 4       |
| BTCT 203  | Research Methodology and Technical Writing in Biotechnology  | 4       |
| BTCT 204  | Bioprocess Engineering                                       | 4       |
| BTCP 205  | Practical work related to core theory papers in the semester | 8       |
|           | SEMESTER-3                                                   |         |
| Core      |                                                              |         |
| BTCT 301  | Pharmaceutical Biotechnology                                 | 4       |
| BTCT 302  | Immunology                                                   | 4       |
| BTCT 303  | Microbial Technology                                         | 4       |
| BTCT 304  | Plant Biotechnology and Animal Cell Science                  | 4       |
| BTCP 305  | Practicals related to theory papers in the semester          | 8       |
| Elective  |                                                              |         |
| BTET 306A | Biostatistics                                                | 2       |
| OR        |                                                              |         |
| BTET 306B | Genomics                                                     | 2       |
|           | SEMESTER-4                                                   |         |
| Core      |                                                              |         |
| BTCT 401  | Bioinformatics                                               | 4       |
| BTCT 402  | Environmental Biotechnology                                  | 4       |
| BTCP 403  | Practical's related to core theory papers in the semester    | 4       |
| BTDI 404  | Dissertation/ Industrial Training                            | 12      |
| Elective  |                                                              |         |
| BTET 405A | Biotechnology Business Management                            | 2       |
| OR        |                                                              |         |
| BTET 405B | Proteomics                                                   | 2       |
|           | Total Credits                                                | 100     |

BTCT- Biotechnology Core Theory, BTCP- Biotechnology Core Practical, BTET- Biotechnology Elective Theory, BTDI – Biotechnology Dissertation/ Industrial Training

# **BTCT 101- Molecular Biology**

# **Teaching and Evaluation Scheme**:

| Subject  | Subject Title     | Credits |                   | Theory |       |     |
|----------|-------------------|---------|-------------------|--------|-------|-----|
| Code     |                   |         | Hrs. Max Marks    |        | Marks |     |
|          |                   |         | Mid Term End Term |        |       |     |
| BTCT 101 | Molecular Biology | 4       | 48                | 30     | 70    | 100 |

# **Course Content**

# Section A

Unit 1 No. of Lectures: 12 Weightage: 25% Genetic material & Recombination: Genetics, Overview of Mendelian Genetics, Central Dogma of life, Genetic Material – Properties, DNA is genetic material - Experimental proof, RNA is genetic material - Experimental proof, Transduction, Conjugation & Overview of transposons. Replication: Proposed models for Mechanism of DNA replication – Semiconservative and conservative and experimental proof for semi conservative mode of replication. Enzymes & accessory proteins involved in DNA replication. Okazaki's experiments, Replication process in prokaryotes & Eukaryotes- Rolling circle mode of replication, Theta replication, D loops. End replication problem in eukaryotes, Telomerase.

# Unit 2 No. of Lectures: 12 Weightage: 25% Genome organization: Genomic organization in prokaryotes, Packaging of DNA as nucleosomes and higher order of packaging in eukaryotes, C-value paradox. Euchromatin, Heterochromatin, Bar bodies. Chromosomes types based on centromere location, Special type of chromosomes: lamp brush and giant chromosomes. DNA damage by radiations and chemicals. DNA Repair -Light Repair & Dark Repair – Excision Repair, Mismatch Repair, Recombination Repair, SOS Repair.

# Section B

# Unit 3 No. of Lectures: 12 Weightage: 25% Promoters & Other Regulatory Sequences: Transcription- Definition, Cis and Trans elements, Importance of DNA binding Proteins, Transcription factors, Promoters and enhancers. Transcription: RNA polymerase and Mechanism of Transcription in prokaryotes & Eukaryotes, Processing of mRNA- 5' capping, 3' polyadenylation, splicing.

# Unit 4No. of Lectures: 12Weightage: 25%Translation: Definition, role of tRNA & ribosomes, Mechanism of translation in Prokaryotes &<br/>Eukaryotes, Post translational modification of proteins such as phosphorylation, adenylation,<br/>acylation and glycosylation. Regulation of gene expression: Operon concept-lac operon – positive<br/>and negative regulation, trp operon- negative regulation & Attenuation.

### References S.N. Title Author Instant notes on Molecular Biology- 4 Ed. Turner et. al. 1 2 **Fundamental Bacterial Genetics** Nancy Trun & Janie Trempy **Suggested Reading** Molecular Biology of Cell: B. Alberts et. al. 1 2 Molecular Biology of the Gene J. D. Watson et. Al. 3 Genes XI B. Lewin 4 **Principles of Genetics** Snustard

Semester-1

# BTCT 102- Principles of Biochemistry and Enzymology Teaching and Evaluation Scheme:

| Subject | Subject Title              | Credits |      | Theory |       | Total |
|---------|----------------------------|---------|------|--------|-------|-------|
| Code    |                            |         | Hrs. | Max 1  | Marks | Marks |
|         |                            |         |      | Mid    | End   |       |
|         |                            |         |      | Term   | Term  |       |
| BTCT    | Principles of Biochemistry | 4       | 48   | 30     | 70    | 100   |
| 102     | and Enzymology             |         |      |        |       |       |

# **Course Content**

# Section AUnit 1No. of Lectures: 12Weightage: 25%Carbohydrate metabolism: Classification and biological importance of Sugar. Aerobic and<br/>anaerobic glycolytic pathways. TCA cycle and various fates of Glucose 6 Phosphate in a cell -<br/>Gluconeogenesis, glycogen synthesis and breakdown. ATP Cycle, High energy compounds;<br/>Electron transport chain order and organization of carriers, proton gradient, respiratory controls<br/>and oxidative phosphorylation, ATP- synthetase complex. ED and PPP pathways.<br/>Nucleic acid metabolism: Brief over view of central dogma. Structure of nucleoside, nucleotides,<br/>purines and pyrimidines. Biosynthesis and regulation of purines and pyrimidines. Structure and<br/>Function of Ribonucleotide reductase.

# Unit 2

# No. of Lectures: 12

Weightage: 25%

Lipid metabolism: Classification of lipids.

 $\alpha$ ,  $\beta$  and  $\delta$  oxidation of fatty acids, metabolism of fatty acids with even and odd carbon atoms, saturated and unsaturated fatty acids. Metabolism and synthesis of phospholipids, glycolipids and sphingolipids; Ketone bodies –formation and degradation, Mobilization of fats.

**Proteins and Amino acids metabolism**: Proteins structure: Classification of amino acids; Primary, secondary, tertiary and quaternary structure of proteins. Properties of amino acids, Biosynthesis and degradation of amino acid. Urea cycle. Nitrogen balance, Regulation of amino acid metabolism in microbial system.

# Section B

Unit 3 No. of Lectures: 12 Weightage: 25% Introduction to Enzymes, nomenclature and classification of enzymes. Enzymes as biocatalysts, catalytic power, activation energy, substrate specificity, active site, theories of mechanisms of enzyme action. Factor affecting enzyme activity and catalysis: pH, substrate and enzyme concentration, temperature, coenzyme and cofactors, Isolation & purification of enzymes. Methods of enzyme assay.

**Enzyme Kinetics:** Derivation of Michaelis - Menton equation and its significance in enzyme kinetic studies. Line weaver-Burke plot, Haldane-Briggs relationship, sigmoidal kinetics steady state kinetics and transient phases of enzyme reaction. Significance of Km, Vmax & Kcat. Introduction to allosteric enzymes and isozymes.

# Unit 4

No. of Lectures: 12

Weightage: 25%

Multi-enzyme system, Co-cooperativity.

**Types of Enzyme inhibition and Mechanism of regulation of enzymes. Enzyme Technology:** Immobilization of enzymes and their application.

| S.N. | Name of Book                                                       | Authors                    |
|------|--------------------------------------------------------------------|----------------------------|
| 1    | Lehninger's Principles of Biochemistry                             | D. L. Nelson and M. M. Cox |
| 2    | Biochemistry                                                       | L. Stryer                  |
| 3    | Biochemistry                                                       | D. Voet and J. G. Voet.    |
| 4    | Biochemistry: Chemical Reactions of the Living Cells (Vol. I & II) | D. Metzerler               |
| 5    | Biochemistry                                                       | Jain & Jain                |
| 6    | Fundamentals of Enzymology                                         | N.C. Price and L. Stevens  |
| 7    | Enzyme Structure and Mechanism                                     | A. Fersht                  |
| 8    | Understanding Enzymes                                              | T. Palmer                  |
| 9    | Enzymology                                                         | T. Devsena                 |

**BTCT 103- Bioinstrumentation** 

# **Teaching and Evaluation Scheme:**

| Subject  | Subject Title      | Credits |      | Theory |       | Total |
|----------|--------------------|---------|------|--------|-------|-------|
| Code     |                    |         | Hrs. | Max M  | Marks | Marks |
|          |                    |         |      | Mid    | End   |       |
|          |                    |         |      | Term   | Term  |       |
| BTCT 103 | Bioinstrumentation | 4       | 48   | 30     | 70    | 100   |

# **Course Content**

# Section A

Unit 1 No. of Lectures: 12 Weightage: 25% Use of analytical microscopy in elucidating the structure-function relationship in microbes: Electron microscopy, phase contrast and fluorescence microscopy & scanning tunneling microscopy. Introduction to Osmosis, diffusion, Fick's law of diffusion and Donnan Equilibrium. Centrifugation techniques: Principle of sedimentation, Sedimentation rate, types of centrifuges, Centrifugation techniques: Rate Zonal; High speed; Isopycnic; Ultra; preparative; Gradient Centrifugation techniques.

## Unit 2

## No. of Lectures: 12

**Chromatographic techniques:** Principle, methodology and applications of Paper, Thin layer gel – filtration, ion –exchange and affinity chromatography; and gas chromatography; High performance liquid chromatography.

**Electrophoresis**: Principles, Factors affecting electrophoresis, types of Electrophoresis- Zone; Gel, Isoelectric; DISC; Immuno & Pulsed Field Gel Electrophoresis

# Section BUnit 3No. of Lectures: 12Weightage: 25%Basic concepts of Electromagnetic radiation – wave length, frequency, wave number, velocity.Properties of U.V and IR rays, fluorescence, Phosphorescence. Principles, instrumentation and<br/>applications of Visible, UV, IR, AA Spectroscopy.

# Unit 4

# No. of Lectures: 12

Weightage: 25%

Weightage: 25%

Principles, instrumentation and applications of NMR, ESR, and Mass spectroscopy. Fluorescence spectroscopy, Raman spectroscopy, CD, ORD, Characterization of macromolecules using X-ray diffraction analysis.

**Principles and applications of Radio isotope techniques:** Detection and measurement of radioactivity, Geiger Muller counters, Scintillation counting, Autoradiography and RIA; Applications of isotopes in biological studies.

| S.N. | Name of Book                                       | Authors                         |
|------|----------------------------------------------------|---------------------------------|
| 1    | Principle & techniques of biochemistry & molecular | Keith Wilson & John Walker      |
|      | biology                                            |                                 |
| 2    | Instrumental methods of analysis                   | B. Sivasankar                   |
| 3    | Biophysical chemistry: Principle and techniques    | Upadhyay & Nath                 |
| 4    | Instrumental methods of analysis                   | Willard, Merritt, Dean & Settle |
| 5    | Instrumental analysis                              | D.A. Skoog, Holler & Crouch     |
| 6    | Physical Biochemistry                              | David Freifelder                |

# **BTCT 104- Cell Biology and Cellular Physiology**

| Teaching a | and Evaluation Scheme:    |         |                |      |       |       |
|------------|---------------------------|---------|----------------|------|-------|-------|
| Subject    | Subject Title             | Credits | Theory         |      |       | Total |
| Code       |                           |         | Hrs. Max Marks |      | Marks |       |
|            |                           |         |                | Mid  | End   |       |
|            |                           |         |                | Term | Term  |       |
| BTCT       | Cell Biology and Cellular | 4       | 48             | 30   | 70    | 100   |
| 104        | Physiology                |         |                |      |       |       |

# **Course Content**

# Section A

| Unit 1                                                                                   | No. of Lectures: 12                                                                        |                                   |  |  |  |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|
| Overview of structure and functions of cellular organelles in Prokaryotes and Eukaryotes |                                                                                            |                                   |  |  |  |  |
| Molecular Organization and fu                                                            | Molecular Organization and functions of - Endoplasmic reticulum, Golgi complex, Lysosomes, |                                   |  |  |  |  |
| Microbodies: Peroxisomes, Ribosomes, Mitochondria, Nucleus, Chloroplast.                 |                                                                                            |                                   |  |  |  |  |
| Organization of Cytoskeleto                                                              | <b>n</b> : Membrane Cytoskeleton                                                           | interactions, Microtubule and its |  |  |  |  |

dynamics, motor proteins, Microfilament and its functions, Intermediate filaments and their functions, Cell division and overview of cell cycle.

**Bio-membranes:** Structures and Transport process

# Unit 2

Unit 3

# No. of Lectures: 12

No. of Lectures: 12

# Weightage: 25%

**Microbial growth**: Definition, Mathematical expression of growth, Growth curve, Methods for measurement of microbial growth, Effect of environment on microorganisms.

**Sterilization**: various sterilization methods, Microbial contamination control and sterility testing. Applications in biotechnology

# Section B

# Weightage: 25%

**Microbial metabolic diversity:** Photosynthesis: Photosynthetic pigments, oxygenic & anoxygenic Photosynthesis, , Nitrogen fixation: Biological nitrogen fixation, Nitrogen fixation process, Nitrogenase enzyme, Regulation of nitrogen fixation.

Methanogenisis, Acetogenisis & Microbial respiration: Bacterial anaerobic and Aerobic respirations, Methanogenisis, Acetogenisis.

Microbial diversity: Nutritional Diversity, Extremophiles

Unit 4No. of Lectures: 12Weightage: 25%Culture collection: Maintenance of cultures, Biochemical characterization.Antimicrobial agents: Antibacterial, Antiviral, Antifungal agents, Mode of action and resistanceto antibiotics

| S.N. | Name of Book                                       | Authors                         |
|------|----------------------------------------------------|---------------------------------|
| 1    | Principle & techniques of biochemistry & molecular | Keith Wilson & John Walker      |
|      | biology                                            |                                 |
| 2    | Instrumental methods of analysis                   | B. Sivasankar                   |
| 3    | Biophysical chemistry: Principle and techniques    | Upadhyay & Nath                 |
| 4    | Instrumental methods of analysis                   | Willard, Merritt, Dean & Settle |
| 5    | Instrumental analysis                              | D.A. Skoog, Holler & Crouch     |
| 6    | Physical Biochemistry                              | David Freifelder                |

# Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Biotechnology Semester-1 BTCP 105 Practicals

| Teaching and Evaluation Scheme: |               |         |      |                          |       |      |         |     |
|---------------------------------|---------------|---------|------|--------------------------|-------|------|---------|-----|
| Subject                         | Subject Title | Credits |      | Practical                |       |      |         |     |
| Code                            |               |         | Hrs/ | Hrs/ Max Marks           |       |      |         |     |
|                                 |               |         | week | Experiments<br>& writing | Spots | Viva | Journal |     |
| BTCP<br>105                     | Practicals    | 8       | 16   | 120                      | 40    | 20   | 20      | 200 |

# **COURSE CONTENT:**

- 1. Good laboratory practices and management.
- 2. Introduction to Instruments that are routine used in the laboratory.
- 3. Basics of weights, measurements and preparation of standard solutions.
- 4. Isolation of DNA from Animal source.
- 5. Isolation of the DNA from a plant source.
- 6. Estimation of DNA by Diphenyl amine method.
- 7. Visualization of the DNA samples by Agarose gel electrophoresis.
- 8. Isolation of proteins from plant source.
- 9. Estimation of proteins by Brad Ford's method/ U.V. Spectrophotometric method.
- 10. Protein estimation by Folin- Lowry's method.
- 11. Protein estimation by Biuret method.
- 12. Carbohydrate estimation by Anthrone method
- 13. Estimation of reducing sugar by DNSA method.
- 14. Isolation of casein from milk.
- 15. Isolation of lactose from milk.
- 16. Isolation of Urease enzyme from plant source.
- 17. Assay of Urease activity.
- 18. Enzyme Kinetics Studies (Amylase).
- 19. Determination of standard substrate curve.
- 20. Effect of substrate concentration on enzyme activity.
- 21. Effect of pH on enzyme activity.
- 22. Effect of Temperature on enzyme activity.
- 23. Effect of Incubation time on enzyme activity.
- 24. Thin layer chromatography of fatty acids/lipids
- 25. Identification of carbohydrates by ascending paper chromatography technique.
- 26. Identification of carbohydrates by radial or circular paper chromatography.
- 27. Separation of amino acids by Paper electrophoresis
- 28. Separation of proteins by SDSPAGE
- 29. Effect of hypertonic, hypotonic and isotonic environment of human RBC.
- 30. Isoelectric point determination of amino acid Glycine.
- 31. Microscopic examination of bacteria and yeast by different staining methods.
- 32. Monochrome staining
- 33. Negative staining
- 34. Gram's staining
- 35. Acid fast staining
- 36. Spore staining
- 37. Capsule staining

- 38. Isolation, cultivation & identification of molds
- 39. Preparation of sterile liquid and solid media for growth of microorganisms.

40. Isolation and maintenance of organisms from soil by plating, streaking and serial dilution methods, slant and stab culture.

- 41. Purification of cultures, maintenance and preservation of pure cultures.
- 42. Bacterial growth curve & factors affecting it.
- 43. Isolation and detection of Mitochondria from leaves.
- 44. Isolation and detection of Chloroplast from leaves.
- 45. Different stages of Mitosis and Meiosis.

| An introduction to Practical Biochemistry | David T.Plummer                    |
|-------------------------------------------|------------------------------------|
| Biochemical Methods                       | S. Sadasivan & A. Manickam         |
| Practical Biotechnology                   | R.S.Guad, G. D. Gupta, S.B.Gokhale |
| Methods In Enzymology                     | Shelby L Berger & Alan R. Kimmel   |
| Experimental Microbiology                 | R. J.Patel                         |
| Laboratory exercises in Microbiology      | Harley Prescot                     |
| Laboratory manual in Biochemistry.        | Jaynarayan                         |

# **BTCT-201- Genetic Engineering**

# **Teaching and Evaluation Scheme:**

| Subject  | Subject Title       | Credits | Theory         |      |      | Total |
|----------|---------------------|---------|----------------|------|------|-------|
| Code     |                     |         | Hrs. Max Marks |      |      | Marks |
|          |                     |         |                | Mid  | End  |       |
|          |                     |         |                | Term | Term |       |
| BTCT 201 | Genetic Engineering | 4       | 48             | 30   | 70   | 100   |

# Section A

Unit 1 No. of Lectures: 12 Weightage: 25% Genetic Engineering, Chimera, Recombinant DNA, Invitro gene manipulation and its tools. Restruction endonucleases, Modification methylases and other enzymes to modify the DNA. Vectors – plasmids, bacteriophages, cosmids, phagemids, artificial chromosome vectors (YAC, BAC), Animal virus derived vectors - SV40 and retroviral vectors, Vectors in yeast and cloning in Plants.

| Unit 2                                                 | No. of Lectures: 12                     | Weightage: 25%     |  |  |  |
|--------------------------------------------------------|-----------------------------------------|--------------------|--|--|--|
| Molecular cloning, - isolation                         | of DNA, Genomic DNA libraries, Shot gun | gene cloning, cDNA |  |  |  |
| libraries, full length cDNA                            | cloning, Transformation of recombinant  | DNA, screening of  |  |  |  |
| recombinants, Southern, Northern and Western blotting, |                                         |                    |  |  |  |

# Section B

# Unit 3 No. of Lectures: 12 Weightage: 25% Polymerase chain reaction and its applications, Sequencing of DNA – Maxam and Gilberts method, Sanger's method and other advances in sequencing, overview of chemical synthesis of oligonucleotides

# Unit 4No. of Lectures: 12Weightage: 25%Mutation, Mutagens and Mutagenesis, techniques of in vitro mutagenesis, Site-directed<br/>mutagenesis. Applications of genetic engineering: Transgenic microbes; Strain construction,<br/>production of recombinant pharmaceuticals.

| S.N. | Title                           | Author                            |
|------|---------------------------------|-----------------------------------|
| 1    | A text book of Biotechnology    | R.C. Dubey                        |
| 2    | Genetic Engineering:            | Smita Rastogi                     |
|      | Suggested Reading               |                                   |
| 1    | Principles of Gene Manipulation | R.W.Old, Twyman M. & S.B.Primrose |
| 2    | Concepts In Biotechnology       | Balasubramanian D et al           |
| 3    | Genetic Engineering             | Sandya Mitra                      |
| 4    | Gene Biotechnology              | S.N. Jogdand                      |

# **BTCT 202-** Systematics of Microbial Life

# **Teaching and Evaluation Scheme**:

| Subject  | Subject Title                 | Credits |      | Theory    |      | Total |
|----------|-------------------------------|---------|------|-----------|------|-------|
| Code     |                               |         | Hrs. | Max Marks |      | Marks |
|          |                               |         |      | Mid       | End  |       |
|          |                               |         |      | Term      | Term |       |
| BTCT 202 | Systematics of Microbial Life | 4       | 48   | 30        | 70   | 100   |

# **Course Content:**

# Section A

Unit 1 No. of Lectures: 12 Weightage: 25% History of Science: Prebiological chemical evolution, proteinoids and protocells; Species concept, theory. Kingdom to Species, The five Kingdoms, Three domain concept of Carl Woese; Endosymbiont. Scope, History and development and Scope of Biotechnology. Contributions of Pioneers.

**Microbial biodiversity** Species, Genomic and Ecologic diversity and classification of microorganisms. Distinguishing characteristics between prokaryotes and eukaryotes. Prions. Extremophiles.

**Taxonomy and Phylogeny** – Classical and Basic concepts in Taxonomy and Phylogeny, Morphological and molecular Taxonomy; Phylogenetic analysis, Phylogenetic trees.

Unit 2 No. of Lectures: 12 Weightage: 25% Disinfection / Sterilization: Physical and chemical agents, radiation & filtration. Indicator organism's for sterilization methods. Cultivation techniques, preservation and maintenance of Microbial cultures.

**Bacterial systematics**: Bergey's Manual of Systematic Bacteriology. Distribution, General features, characters, and replication, Systematics and Economic Importance of various groups of bacteria. *Proteobacteria, Firmicutes*. Actinobacteria, Mycoplasma,, Spirochetes, Rickettsiae,

|                                                                                                | Section B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |  |  |  |  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| Unit 3                                                                                         | No. of Lectures: 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Weightage: 25%                                                             |  |  |  |  |
| Viruses: General characters, Structure and replication, nomenclature and classification of DNA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |  |  |  |  |
| and RNA viruses. Plan cultivation. Economic Imp                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bacteriophages. Virus Diagnosis and                                        |  |  |  |  |
|                                                                                                | E Contraction of the second se | ics, diversity, significance and potential hiles Halophiles and Barophile. |  |  |  |  |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |  |  |  |  |
| Unit 4                                                                                         | No. of Lectures: 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Weightage: 25%                                                             |  |  |  |  |
| Algal diversity and impo                                                                       | ortance: Distribution, morphole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ogy, taxonomy and lifecycle. Economic                                      |  |  |  |  |
| Importance of algae (al molecules).                                                            | gal pigments, biofuels, hydr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ogen production, important bioactive                                       |  |  |  |  |

**Fungi**: General characters, Distribution, Morphology, Structure, nutrition and life cycle, Classification and Economic Importance. Associations: Lichens, Mycorrhiza. Yeast: genomics, diversity, and economic application.

**Protozoa**: General characters, Morphology, Structure, nutrition and life cycle, Classification, Economic Importance

| S.N. | Name of Book                                    | Authors                                               |
|------|-------------------------------------------------|-------------------------------------------------------|
| 1    | General Microbiology                            | R.Y. Stanier, John L. Ingraham and Mark L.            |
|      |                                                 | Wheelis                                               |
| 2    | Principles of Microbiology                      | Ronald M. Atlas, Me Graw Hill                         |
| 3    | Microbiology                                    | Michael J. Pcleczar, Chan and Krieg, Mac Graw Hill.   |
| 4    | Brocks Biology of Microorganisms<br>8th Edition | Michael T. Madigan, John M. Martinko. Jack<br>Parker. |
| 5    | Microbiology Principle & Applications           | J.J. Black, John Wiley, Prentice Hall                 |
| 6    | An Introduction to Fungi                        | H.C. Dube : Vikas Publishing House Pvt. Ltd.          |
| 7    | Introductory Mycology                           | C.J. Alexopoules                                      |
| 8    | Structure & reproduction of the Algae           | F.E. Fristsch                                         |

# Semester-2

### BTCT: 203- Research Methodology and Technical Writing in Biotechnology Teaching and Evaluation Scheme

| Teaching | inu Evaluation Scheme.          |         |                |      |       |       |
|----------|---------------------------------|---------|----------------|------|-------|-------|
| Subject  | Subject Title                   | Credits | Theory         |      |       | Total |
| Code     |                                 |         | Hrs. Max Marks |      | Marks |       |
|          |                                 |         |                | Mid  | End   |       |
|          |                                 |         |                | Term | Term  |       |
| BTCT     | <b>Research Methodology and</b> | 4       | 48             | 30   | 70    | 100   |
| 203      | <b>Technical Writing in</b>     |         |                |      |       |       |
|          | Biotechnology                   |         |                |      |       |       |

# **Course Content**

Unit 1

Unit 2

Unit 3

## Section A No. of Lectures: 12

Weightage: 25%

Current trends in biotechnological research: Introduction, Types of research

**Research Process:** Identification of the problem, Defining the problem.

Literature search: Information sources

# No. of Lectures: 12

# Weightage: 25%

**Design of the experiment:** Variables in the experiments, evolution and application of research designs, observations, measurements, error measurements, error analysis.

**Progress of research**: Evaluation of results, comparison with existing methodologies, validation of findings

# Section B No. of Lectures: 12

Weightage: 25%

**Scientific communication :** Types of reports; Scientific writing skills, Elements of a Scientific paper including Abstract, Introduction, Materials & Methods, Results, Discussion, References; Drafting titles and framing abstracts, Plagiarism

Unit 4No. of Lectures: 12Weightage: 25%Technical Writing : Guidelines for effective writing, Paragraph writing, Writing style of<br/>application, Personal Resume, Official letter and Memo including Requests, Complains, asking<br/>quotation etc.

| S.N. | Name of Book                                       | Authors                    |
|------|----------------------------------------------------|----------------------------|
| 1    | Research Methodology                               | CR Kothari                 |
| 2    | Study and Communication Skills for the Biosciences | Stuart Johnson & Jon Scott |

# **BTCT 204-** Bioprocess Engineering

# **Teaching and Evaluation Scheme:**

| Subject | Subject Title                 | Credits |                | Theory |       | Total |
|---------|-------------------------------|---------|----------------|--------|-------|-------|
| Code    |                               |         | Hrs. Max Marks |        | Marks |       |
|         |                               |         |                | Mid    | End   |       |
|         |                               |         |                | Term   | Term  |       |
| BTCT    | <b>Bioprocess Engineering</b> | 4       | 48             | 30     | 70    | 100   |
| 204     |                               |         |                |        |       |       |

# **Course Content**

# Section A

Unit 1 No. of Lectures: 12 Weightage: 25% Introduction to Fermentation & Bioprocess Technology. Growth phases of microorganism, primary secondary metabolite. Effects of environmental factors on growth. Growth kinetics: Microbial growth cycle and measurement of growth. Primary and secondary screening, Preservation of industrially important microorganisms. Strain improvement techniques. Fermentation substrates used in media formulation. Optimization of media. Inoculum development Scale up of bioprocesses.

| Unit 2                       | No. of Lectures: 12          |                                | eightage: 25%    |
|------------------------------|------------------------------|--------------------------------|------------------|
| Elements of biochemical      | engineering, Fermenter       | and Bioreactor design;         | ; Solid state /  |
| Submerged cultivation; Ba    | atch, fed batch and continue | ous cultivation. Sterilization | n techniques for |
| media, reactor and air. Agin | tation and aeration and mas  | ss transfer of oxygen in di    | fferent types of |
| Bioreactors.                 |                              |                                |                  |

# Section B No. of Lectures: 12

# Weightage: 25%

Weightage: 25%

Measurement and Control of Process parameters in Fermenter. Automation: two position and proportionate control, biosensors, microprocessor based control systems. Cell separation and Cell disintegration techniques.

# Unit 4

Unit 3

# No. of Lectures: 12

Product enrichment and purification techniques.

**Enzyme technology**: Use of immobilized enzymes in bioreactor and its applications. Bioprocess economics.

| References |  |
|------------|--|
|            |  |

| S.N. | Name of Book                              | Authors                                   |
|------|-------------------------------------------|-------------------------------------------|
| 1    | Principles of Fermentation Technology     | A. Whitekar, P. F. Stanbury & S. J. Hall  |
| 2    | Comprehensive Biotechnology               | M. Moo-Young (Ed)                         |
| 3    | Methods in Industrial Microbiology:       | G. Sikyta                                 |
| 4    | Industrial Microbiology:                  | L. E. Casida                              |
| 5    | Biochemical Engineering Fundamentals      | J. E. Bailey & D. F. Ollis                |
| 6    | Microbial Technology                      | H .J. Peppler & D. Perlman (Ed)           |
| 7    | Prescott & Dunn's Industrial Microbiology | G. Reed                                   |
| 8    | Fermentation Technology                   | H A Modi                                  |
| 9    | Industrial Microbiology                   | A H. Patel                                |
| 10   | Textbook of Biotechnology                 | W. Crueger and A. Crueger                 |
| 11   | Industrial Microbiology: An Introduction  | M Waites, N Morgan, J Rockey and G Higton |

# Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Biotechnology Semester-2 BTCP 205 Practicals

# Teaching and Evaluation Scheme:

| Subject     | Subject Title | Credits |                                          | Practical      |         |    | Total |     |
|-------------|---------------|---------|------------------------------------------|----------------|---------|----|-------|-----|
| Code        |               |         | Hrs/                                     | Hrs/ Max Marks |         |    | Marks |     |
|             |               |         | weekExperimentsSpotsVivaJournal& writing |                | Journal |    |       |     |
| BTCP<br>205 | Practicals    | 8       | 16                                       | 120            | 40      | 20 | 20    | 200 |

# **COURSE CONTENT:**

- 1. Isolation of RNA from yeast
- 2. Estimation of RNA by orcinol method.
- 3. Isolation of DNA from E. coli.
- 4. Isolation of plasmid DNA from *E. coli* culture.
- 5. Restriction digestion of DNA.
- 6. Ligation of DNA fragments.
- 7. Visualization of DNA samples by Agarose gel electrophoresis.
- 8. Transformation and selection of recombinants.
- 9. Isolation of Amylase producing microorganisms from soil.
- 10. Isolation of Protease producing microorganisms from soil.
- 11. Isolation of Lipase producing microorganisms from soil.
- 12. Screening of antibiotic producing microorganisms from soil.
- 13. Screening of organic acid producing microorganisms from soil.
- 14. Citric acid estimation by titrometric method.
- 15. Estimation of Reducing and Non-reducing sugar by Cole's method.
- 16. Fermentative production of Citric acid. -
- 17. Gel entrapment of yeast cells & determination of invertase activity of immobilized yeast cells.
- 18. To search and collect Microbes occurring in nature and to examine the collected samples exhibiting viruses, bacteria and molds.
- 19. To Isolate microbes from Mangrove ecosystem
- 20. To Isolate thermophilic microbes from Gujarat sites
- 21. To Isolate halophilic and alkalophlic microbes from Gujarat sites
- 22. To write a review article
- 23. How to include the references in a paper
- 24. How to write a Title and to find out keywords in a scientific communication
- 25. How to write an abstract
- 26. How to write a thesis
- 27. How to write an Introduction for an article
- 28. How to write a short note on any Topic
- 29. How to describe a Diagram on any Topic
- 30. How to point out the mistakes in the scientific communication

| S.N. | Title                                     | Author                             |
|------|-------------------------------------------|------------------------------------|
| 1    | An introduction to Practical Biochemistry | David T.Plummer                    |
| 2    | Biochemical Methods                       | S. Sadasivan & A. Manickam         |
| 3    | Practical Biotechnology                   | R.S.Guad, G. D. Gupta, S.B.Gokhale |
| 4    | Methods In Enzymology                     | Shelby L Berger & Alan R. Kimmel   |
| 5    | Experimental Microbiology                 | R. J.Patel                         |
| 6    | Laboratory exercises in Microbiology      | Harley Prescot                     |
| 7    | Laboratory manual in Biochemistry.        | Jaynarayan                         |

# **BTCT – 301 PHARMACEUTICAL BIOTECHNOLOGY**

| <b>Teaching and Evaluation Sche</b> | me: |
|-------------------------------------|-----|
|-------------------------------------|-----|

| Subject | Subject Title  | Credits |                | Theory   |          |     |
|---------|----------------|---------|----------------|----------|----------|-----|
| Code    |                |         | Hrs. Max Marks |          | Marks    |     |
|         |                |         |                | Mid Term | End Term |     |
| BTCT    | Pharmaceutical | 4       | 48             | 30       | 70       | 100 |
| 301     | Biotechnology  |         |                |          |          |     |

# **COURSE CONTENT**

|                                    | Stellouit                      |                                   |
|------------------------------------|--------------------------------|-----------------------------------|
| Unit 1                             | Weightage:25%                  | Lectures:12                       |
| History of the pharmaceutical indu | stry, Biopharmaceuticals and   | introduction to animal, plant and |
| microbial based pharmaceutical pr  | oducts. Expression hosts, reco | ombinant microbes as expression   |
| hosts for biopharmaceuticals, Mol  | ecular Pharming                |                                   |

Section A

# Unit 2

Unit 3

# Weightage:25%

Concept and approaches for gene therapy, ex vivo and in vivo gene therapy, Potential target diseases for gene therapy (inherited disorders and cancer) Antigen and antisense therapy Vaccine: genetically improved vaccines, synthetic peptide based vaccines, nucleic acid vaccines Xenotransplantation in pharmaceutical biotechnology.

# Section B

# Weightage:25%

# Dosage forms, Formulations and delivery routes for Biopharmaceutical: Oral delivery systems, pulmonary delivery, Nasal, Trans mucosal and transdermal delivery systems, Pharmacogenetics and its impact on drug therapy

| Unit 4                                                                                 | Weightage:25%                          | Lectures:12               |  |  |
|----------------------------------------------------------------------------------------|----------------------------------------|---------------------------|--|--|
| Introduction to Differ                                                                 | rent Pharmacopoeia, GMP Guidelines for | manufacturing facilities, |  |  |
| Regulatory market Inspections and their requirements, Quality Control analysis, QA and |                                        |                           |  |  |
| Documentation, SOP, Market complain analysis. USFDA WHO                                |                                        |                           |  |  |
| 0.                                                                                     | 1 1 7 2 2                              | ontrol analysis, QA and   |  |  |

# **REFERENCES:**

|            | REITCES.                                                              |                                    |
|------------|-----------------------------------------------------------------------|------------------------------------|
| Sr.<br>No. | Name of Book                                                          | Authors                            |
| 1          | Hugo and Russel's Pharmaceutical Microbiology:                        | Hugo and Russel's                  |
| 2          | Biopharmaceuticals Biochemistry and Biotechnology                     | Gary Walsh                         |
| 3          | Pharmaceutical Biotechnology: Drug Discovery & Clinical Applications: | O. Kayser& R.H. Muller             |
| 4          | Biopharmaceuticals:                                                   | Jogdand, S.N                       |
| 5          | Molecular Biotechnology Therapeutic applications and Strategies       | M. Sunil and P.D Salil             |
| 6          | Pharmaceutical Biotechnology                                          | S. P.Vyas and D.V. Kohli           |
| 7          | Comprehensive Biotechnology                                           | K G Ramawat&ShailyGoyal            |
| 8          | Pharmaceutical Biotechnology Fundamentals & Applications              | DJ Crommelin RD<br>Sindler&Meibohm |
| 9          | Medical Biotechnology                                                 | P. Nallari& V V Rao                |

Lectures:12

Lectures:12

# Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Biotechnology Semester-3 BTCT302-IMMUNOLOGY

# Teaching and Evaluation Scheme:

| Subject         | Subject Title | Credits | Theory         |          |          | Total |
|-----------------|---------------|---------|----------------|----------|----------|-------|
| Code            |               |         | Hrs. Max Marks |          | Marks    |       |
|                 |               |         |                | Mid Term | End Term |       |
| <b>BTCT 302</b> | Immunology    | 4       | 48             | 30       | 70       | 100   |

# **COURSE CONTENTS:**

| Unit 1 Weightage:25% Lectures:12                                                                                                                                     |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Adaptive immunity and innate immunity. Inflammation: Definition, Characteristics                                                                                     |  |  |  |  |  |  |
| inflammation, causes and mechanism of inflammation                                                                                                                   |  |  |  |  |  |  |
| <b>Cells of immune system:</b> Hematopoiesis, and structure and functions of immune cells, ADCC                                                                      |  |  |  |  |  |  |
| Organs of immune system: Primary and secondary lymphoid organs.                                                                                                      |  |  |  |  |  |  |
| Antigens and antibodies: Properties of immunogens, haptens, epitopes, structure and classes of                                                                       |  |  |  |  |  |  |
| immunoglobulins, monoclonal antibodies and abzymes.                                                                                                                  |  |  |  |  |  |  |
| Complement: Definition, Classical, alternative and lectin pathway of complement system                                                                               |  |  |  |  |  |  |
| Complement deficiency diseases. Cytokines: properties, receptors, associated diseases, therapeut                                                                     |  |  |  |  |  |  |
| applications.                                                                                                                                                        |  |  |  |  |  |  |
| Unit 2Weightage:25%Lectures:12                                                                                                                                       |  |  |  |  |  |  |
| Antibody diversity: Antibody diversity definition, Organization of Ig genes, mechanism of gen                                                                        |  |  |  |  |  |  |
| rearrangement, generation of diversity; expression, synthesis and class switching.                                                                                   |  |  |  |  |  |  |
| Generation, activation and differentiation of B cells: B cell maturation, activation and                                                                             |  |  |  |  |  |  |
| proliferation.                                                                                                                                                       |  |  |  |  |  |  |
| <b>T-cell receptor, T-cell maturation, activation and differentiation:</b> TCR-complex, peptic                                                                       |  |  |  |  |  |  |
| binding, thymic selection, activation and differentiation of T cells.                                                                                                |  |  |  |  |  |  |
| <b>Major histocompatibility complex</b> : Definition, types, structure, organization of MHC genes an inheritance, Self MHC restriction.                              |  |  |  |  |  |  |
| ,                                                                                                                                                                    |  |  |  |  |  |  |
| Antigen processing and presentation: Cytosolic and endocytic pathway for antigen processing<br>Section B                                                             |  |  |  |  |  |  |
| Unit 3Weightage:25%Lectures:12                                                                                                                                       |  |  |  |  |  |  |
| Antigen and antibody interaction: Precipitation and agglutination reactions.                                                                                         |  |  |  |  |  |  |
| <b>Transplantation immunology:</b> Transplantation definition, transplantation types, mechanism o                                                                    |  |  |  |  |  |  |
| graft rejection, HLA matching, Mixed lymphocyte reaction.                                                                                                            |  |  |  |  |  |  |
| Hypersensitivity reactions: Classification and types of hypersensitivity reactions.                                                                                  |  |  |  |  |  |  |
| Vaccines: Definition, Passive Immunization and Active immunization, Classification of vaccines                                                                       |  |  |  |  |  |  |
| Herd immunity.                                                                                                                                                       |  |  |  |  |  |  |
| Tumor immunology: Definition of benign and malignant tumor, oncogenes, Process o                                                                                     |  |  |  |  |  |  |
| metastasis, Tumor Antigen (TATA, TSTA)                                                                                                                               |  |  |  |  |  |  |
| Unit 4Weightage:25%Lectures:12                                                                                                                                       |  |  |  |  |  |  |
| Immune tolerance and autoimmunity: Establishment and failure of tolerance,                                                                                           |  |  |  |  |  |  |
| a. Organ specific diseases (Addison's disease, Autoimmune hemolytic anaemia, Good pasture                                                                            |  |  |  |  |  |  |
| syndrome, Graves' disease, Hashimotos thyroditis, Insulin dependent diabetes mellitus                                                                                |  |  |  |  |  |  |
| Myasthenia gravis, Glomerularnephritis and Pernicious anaemia)                                                                                                       |  |  |  |  |  |  |
| <b>b. Systemic diseases:</b> Multiple sclerosis, Rheumatoidarthritis,Systemic lupus erythramatosis.                                                                  |  |  |  |  |  |  |
| I a transmission of diagonal a V(II) $h$ $W/AV$ a Di Casuca Vyruduoma d Atavi                                                                                        |  |  |  |  |  |  |
| <b>c. Immunodeficiency diseases. a.</b> SCID, b. WAS c. Di George Syndrome, d. Ataxi telengiectasia, e. Chediak Higashi Syndrome, f. Chronic granulamatous diseases. |  |  |  |  |  |  |

# **BTCT303: MICROBIAL TECHNOLOGY**

# **Teaching and Evaluation Scheme:**

| Subject Title        | Cre  | Theory         |           |                             | Total                                       |
|----------------------|------|----------------|-----------|-----------------------------|---------------------------------------------|
|                      | dits | Hrs. Max Marks |           | Marks                       |                                             |
|                      |      | Mid Term End   |           |                             |                                             |
|                      |      |                |           | Term                        |                                             |
| Microbial Technology | 4    | 48             | 30        | 70                          | 100                                         |
|                      | -    | dits           | dits Hrs. | dits Hrs. Max M<br>Mid Term | dits Hrs. Max Marks<br>Mid Term End<br>Term |

# COURSE CONTENT

## Section A WEIGHTAGE: 25%

Lectures: 12 General concepts of Microbial Technology, Principles of exploitation of microbial biodiversity.

Lectures: 12

Microbial production of Alcoholic beverages: beer, wine, sake.

Microbial production of Food and Dairy products: Single cell proteins and Mushroom cultivation; Cheese, bread and yoghurt.

# UNIT2

**UNIT3** 

UNIT1

# WEIGHTAGE: 25%

Microbial production of: Enzymes: Proteases, Amylases; Vitamins: Vitamin B<sub>12</sub> and Vitamin B2; Amino acids: Glutamic acid, Lysine. Antibiotics: Penicillin, Streptomycin; Organic acids: Citric acid, acetic acid. Microbial Polysaccharides: Overview of all microbial polysaccharides and detailed production of Xanthan gum. Alkaloids: Production of Ergot Alkaloid and Microbial Transformations of Steroids.

# Section B

WEIGHTAGE: 25%

Lectures: 12

Industrial applications of Algae: Brief specifications of Algal classification on the basis of size, pigments and polysaccharides, Techniques of mass culture of Algae, Application of Macro and Micro Algae as a Food and feed supplement, as a biofertilizer, in cosmetic and drug industry, as a biofuel etc. **Production of Biofertilizers**: Symbiotic (*Rhizobium, Bradyrhizobium, Acetobacter*, Frankia, BGA) and Non-symbiotic N<sub>2</sub> fixing biofertilizers (Azotobacter), Phosphate solubilizing biofertilizers (Bacteria, Fungi and VAM) and Potassium fixing biofertilizers

# UNIT4

# WEIGHTAGE: 25%

Lectures: 12

**Biopesticides** (Bacillus, Metarhizium and Baculoviruses). **Biopolyesters** (polyhydroxyalkanoates and polylactate). **Bioconversions**: Biomining and bioleaching of ores, Biological fuel generation (Alcohols, Alkanes, Hydrogen and Methane), Microbial Enhanced Oil Recovery process.

| Refei        | rence Books:                             |                                              |
|--------------|------------------------------------------|----------------------------------------------|
| <b>S. N.</b> | Title of book                            | Author                                       |
| 1            | Comprehensive Biotechnology              | Murray Moo-Young                             |
| 2            | Microbial Technology                     | H. J. Peppler& D. Perlman (Ed)               |
| 3            | Microbial Biotechnology                  | Alexander N. Glazer & Hiroshi Nikaido (Ed.)  |
| 4            | The Desk Encyclopedia of Microbiology    | M. Schaechter (ed.)                          |
| 5            | Food Microbiology                        | Frazier William C and Westhoff Dennis C      |
| 6            | Text Book of Industrial Microbiology     | W Creuger& A Creuger                         |
| 7            | Industrial Microbiology                  | A. H. Patel                                  |
| 8            | Industrial Microbiology: An Introduction | M. J. Waites, N. L. Morgan, J. S. Rockey, G. |
|              |                                          | Higton                                       |
| 9            | Biotechnology                            | HJ Rehm& G I Reed                            |

# BTCT 304- PLANT BIOTECHNOLOGY AND ANIMAL CELL SCIENCE

| l eaching a | and Evaluation Scheme: |     |         |        |       |       |       |
|-------------|------------------------|-----|---------|--------|-------|-------|-------|
| Subject     | Subject Title          |     | Credits | Theory |       | Total |       |
| Code        |                        |     |         | Hrs.   | Max M | Marks | Marks |
|             |                        |     |         |        | Mid   | End   |       |
|             |                        |     |         |        | Term  | Term  |       |
| BTCT        | Plant Biotechnology    | and | 4       | 48     | 30    | 70    | 100   |
| 304         | Animal Cell Science    |     |         |        |       |       |       |

# **Course Content**

Unit 1

# Section A

No. of Lectures: 12

Weightage: 25%

# **Plant Tissue culture:**

Introduction to cell and tissue culture; Tissue Culture Media; Sterilization in tissue culture, Initiation and maintenance of callus and suspension cultures; Single cell clones; Organogenesis; Somatic embryogenesis; Shoot tip culture; Virus-free plants; Anther, pollen and ovary culture for production of haploid plants and homozygous lines, Somaclonal variation.

Protoplast Isolation and Fusion, Cryopreservation

Unit 2 No. of Lectures: 12 Weightage: 25% Cell culture Laboratory design & Equipments, Planning, construction and services; Layout; Sterile handling area; Aseptic concepts; Maintenance of sterility; Cell culture vessels. Different types of cell culture media: constituents, Role of CO2; Role of serum and supplements. Serum Free Media. Serum and protein free defined media and their applications.

Culturing & Sub-Culturing of Animal Cells. Primary culture; and maintenance; Primary and established cell line cultures. Measurement of viability, Cell Differentiation, Cell synchronization. Scale-up: Cell culture reactors; Perfusion cultures; Fluidized bed reactors, Scale-up in monolayers

|                                                                                                                                                                                                                                                                                                                                                                                                          | Section B           |                |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|--|--|--|--|
| Unit 3                                                                                                                                                                                                                                                                                                                                                                                                   | No. of Lectures: 12 | Weightage: 25% |  |  |  |  |
| Transformation Technology                                                                                                                                                                                                                                                                                                                                                                                |                     |                |  |  |  |  |
| Basis of tumor formation; Features of Ti and Ri plasmids; Mechanisms of DNA transfer; Role of virulence genes; Use of Ti and Ri as vectors; Binary vectors; Use of 35 S and other promoters; Genetic markers; Use of reporter genes; Methods of nuclear transformation; Viral vectors and their applications; Vector-less or direct DNA transfer: Particle bombardment, Electroporation, Microinjection, |                     |                |  |  |  |  |
| Markers                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                |  |  |  |  |
| Unit 4                                                                                                                                                                                                                                                                                                                                                                                                   | No. of Lectures: 12 | Weightage: 25% |  |  |  |  |
| Application of Plant and Animal Biotechnology: Commercial Transgenic plants Herbicide                                                                                                                                                                                                                                                                                                                    |                     |                |  |  |  |  |
| resistance, insect resistance, disease resistance, virus resistance, abiotic stresses.                                                                                                                                                                                                                                                                                                                   |                     |                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                |  |  |  |  |
| <b>Production of useful proteins and other products in transgenic animals, Stem cell technology:</b> Stem cell cultures, embryonic stem cells and their applications. Artificial insemination and embryo transfer, Invitro fertilization.                                                                                                                                                                |                     |                |  |  |  |  |

| Referen   | nces                                                  |                             |
|-----------|-------------------------------------------------------|-----------------------------|
| S.        | Name of Book                                          | Authors                     |
| <b>N.</b> |                                                       |                             |
| 1         | Biotechnology in Crop Improvement                     | H.S.Chawla.                 |
| 2         | An Introduction to Plant Tissue Culture               | M.K.Razdan.                 |
| 3         | Handbook of Plant Cell Culture (Vols. 1 to 4)         | Evans <i>et. al.</i>        |
| 4         | Plant Tissue and Cell Culture                         | H.E.Street                  |
| 5         | Applied and Fundamental Aspects of Plant Cell         | J.Reinert&Y.P.S.Bajaj (Eds) |
|           | Tissue and Organ Culture                              |                             |
| 6         | Principles of Plant Biotechnology: An Introduction to | S.H.Mantellet. al.          |
|           | Genetic Engineering in Plants                         |                             |
| 7         | Plant Propagation by Tissue Culture                   | E.F.George, M.A.Hall& G-J   |
|           |                                                       | de Klerk (Eds.)             |
| 8         | Cell Culture and Somatic Cell Genetics of Plants      | A.K.Vasil                   |
| 9         | Genetic Engineering                                   | SmitaRastogi                |
| 10        | Culture of Animal Cells                               | R. I. Freshney              |

# Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Biotechnology Semester-3 BTCP 305 PRACTICALS

| Teaching and Evaluation Scheme: |               |         |                |                          |       |      |         |       |
|---------------------------------|---------------|---------|----------------|--------------------------|-------|------|---------|-------|
| Subject                         | Subject Title | Credits | its Practicals |                          |       |      | Total   |       |
| Code                            |               |         | Hrs/ Max Marks |                          |       |      |         | Marks |
|                                 |               |         | week           | Experiments<br>& writing | Spots | Viva | Journal |       |
| BTCP<br>305                     | Practicals    | 8       | 16             | 120                      | 40    | 20   | 20      | 200   |

# List of experiments: Experiments correspond to the theory papers in the current semester

- 1. To determine the blood group of given sample.
- 2. To study Preparation of O antigen and H antigen from *Salmonella typhi*.
- 3. To detect the presence of antigen using WIDAL agglutination test.
- 4. To Perform Sandwich ELISA test
- 5. To Perform VDRL test for syphilis
- 6. To study Ag-Ab interaction by Immunoelectrophoresis.
- 7. To study Antigen-antibody interaction by using Oucterlony Double Diffusion (ODD) technique.
- 8. Isolation of free living nitrogen fixing bacteria.
- 9. Isolation of symbiotic nitrogen fixing bacteria from root nodules of leguminous plant.
- 10. Isolation of Phosphate Solubilizing Microorganisms from soil.
- 11. Isolation of Potassium Solubilizing Microorganisms from soil.
- 12. Fermentative production of Cheese.
- 13. Fermentative production of Yogurt.
- 14. Estimation of alcohol by potassium dichromate method.
- 15. Fermentative production of alcohol by yeast.
- 16. Isolation of Exopolysacharide producing organism from Citrus Canker
- 17. Mushroom spawn production technology
- 18. Sterility testing of paranteral products
- 19. Microbial limit test for oral dosage (capsules, tablet)
- 20. Enumeration of microbial load in class A and class B area by passive air sampling (settle plate method)
- 21. Analysis of microbial load in water. (purified water, WFI)
- 22. Tests for nonsterile pharmaceutical products.
- 23. Antibiotic potency testing.
- 24. Bioburden Estimation of medical devices
- 25. Sterilization techniques in tissue culture labs
- 26. Preparation of stock solutions
- 27. Laboratory design in animal tissue culture
- 28. Culture vessles used in animal tissue culture
- 29. Standardization of method of Surface Sterilization of leaves
- 30. Standardization of sterilants for surface sterilization of various explants materials
- 31. Isolation of single cells from plant leaves-Mechanical method.
- 32. Isolation of single cells from plant leaves-Enzymatic method.
- 33. Isolation of Protoplasts from plant leaves-Enzymatic method
- 34. Immobilization of isolated plant cells by entrapment
- 35. Single cell culture : Bergmann's plating technique
- 36. Single cell culture using micro chamber technique.

# **BTET 306A- BIOSTATISTICS**

# **Teaching and Evaluation Scheme:**

| Subject          | Subject Title | Credits | Theory |                | Total    |       |
|------------------|---------------|---------|--------|----------------|----------|-------|
| Code             |               |         | Hrs.   | Hrs. Max Marks |          | Marks |
|                  |               |         |        | Mid Term       | End Term |       |
| <b>BTET 306A</b> | Biostatistics | 2       | 24     | 15             | 35       | 50    |

# **COURSE CONTENT**

# Unit 1Weightage:50%Lectures:12Biostatistics: Definition, branches and Scope of Biostatistics, Types of Variable and Measurement<br/>scale of Variable, Sample and statistic vs. Population and parameter.Sampling: Rules for sample collection, Sampling error and Sampling techniques.Sampling: Rules for sample collection, Sampling error and Sampling techniques.Measures of data: Measures of central tendency – Mean (arithmetic, harmonic and geometric),<br/>Median and Mode.Measures of dispersion (Standard deviation, Variance and coefficient of variance) and Standard

**Measures of dispersion** (Standard deviation, Variance and coefficient of variance) and Standard Error and its significance.

Gaussian's Normal distribution

Unit 2

# Weightage:50%

# Lectures:12

**Inferential statistics:** Basic idea of significance test, Statistical hypothesis, types of errors, level of significance.

**Parametric and Nonparametric tests:** Paired and Unpaired Student's t test and one way ANOVA as a parametric tests, Chi-square test as a Nonparametric test.

**Measures of Relationship:** Karl Pearson's Correlation coefficient and Simple linear regression. **Data Analysis using Microsoft office Excel** 

# REFERENCES

| S.        | Name of Book                                               | Authors                       |
|-----------|------------------------------------------------------------|-------------------------------|
| <b>N.</b> |                                                            |                               |
| 1         | Biostatistical Analysis                                    | Jerrold H. Zar                |
| 2         | Basic Biostatistics: Statistics for Public health Practice | B. Burt Gerstman              |
| 3         | An Introduction To Biostatistics                           | P.S.S. Sundar Rao, Richard J. |
| 4         | Research Methodology: Methods and Techniques               | C. R. Kothari                 |
| 5         | Comprehensive Textbook of Biostatistics & Research         | S. Kartikeyan, R.M.           |
|           | Methodology                                                | Chaturvedi, R.M. Bhosale      |
| 6         | Methods In Biostatistics For Medical Students And          | B. K. Mahajan                 |
|           | Research Workers                                           |                               |
| 7         | Elements of Biostatistics                                  | S. Prasad                     |

# Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Biotechnology Semester-3 BTET: 306B – GENOMICS

# Teaching and Evaluation Scheme:

| Subject           | Subject Title | Credits | 5 Theory       |          |          | Total |
|-------------------|---------------|---------|----------------|----------|----------|-------|
| Code              |               |         | Hrs. Max Marks |          | Marks    |       |
|                   |               |         |                | Mid Term | End Term |       |
| <b>BTET: 306B</b> | GENOMICS      | 2       | 24             | 15       | 35       | 50    |

# **COURSE CONTENT**

Unit 1Weightage: 50 %No. of Lectures: 12Genomics: Concepts and Applications - Microbial genome and genome epidemiology.Organization of eukaryotic genomes. Repetitive and transposable genetic elements. Telomereregions. Structural genomics, Functional genomics and comparative genomics.

**Whole genome analysis -** Preparation of genome libraries (cosmid, BAC), shotgun sequencing, conventional and automated sequencing methods, Next generation sequencing methods. Genome mapping and DNA fingerprinting. Gene knockout, genome-wide mutagenesis

Unit 2Weightage: 50 %No. of Lectures: 12Transciptomics and Microarray - Introduction to transcriptomics and Global gene expressionprofiling. RNA and DNA Microarray preparation, working and analysis. DNA Chips, SNPs EST,SAGE.

**Proteomics -** concepts and applications of Expressional Proteomics, Functional Proteomics, Structural Proteomics.

**Protein separation techniques:** Affinity purification of proteins and TAP tag, 2D Gel electrophoresis, ITRAQ Isoelectric Focusing (IEF).

| NEFEF       | ENCE:                                                |                                |
|-------------|------------------------------------------------------|--------------------------------|
| <b>S.N.</b> | Name of Book                                         | Authors                        |
| 1           | Biochemistry                                         | J. M. Berg, J. L. Tymoczko, L. |
|             |                                                      | Stryer                         |
| 2           | Principles and Techniques of Biochemistry & Mol.     | Keith Wilson & John Walker     |
|             | Biology                                              |                                |
| 3           | The Cell: A Molecular Approach                       | G.M.Cooper&R.E.Hausman         |
| 4           | Gene IX                                              | Lewin                          |
| 5           | Molecular Biology of the Gene                        | Watson et al.                  |
| 6           | Protein Structure Prediction: Methods and Protocols  | Webster, David                 |
| 7           | Bioinformatics: A Practical guide to the Analysis of | A. D. Bzxevanis and B. F. F.   |
|             | genes and Proteins                                   | Onellette                      |
| 8           | Bioinformatics Methods and protocols: Methods        | S. Misenes and S. A. Krawetz   |
|             | molecular biology Vol. 132                           | (Eds)                          |
| 9           | Biopharmaceuticals Biochemistry and Biotechnology    | G. Walsh                       |

# Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Biotechnology Semester 4 BTCT: 401- BIOINFORMATICS

# **Teaching and Evaluation Scheme**:

| Subject  | Subject Title  | Credits |                | Theory |          |       |
|----------|----------------|---------|----------------|--------|----------|-------|
| Code     |                |         | Hrs. Max Marks |        |          | Marks |
|          |                |         |                | Mid    | End Term |       |
|          |                |         |                | Term   |          |       |
| BTCT 401 | Bioinformatics | 4       | 48             | 30     | 70       | 100   |

# **COURSE CONTENT**

# Section A

Unit 1Weightage:25%Lectures:12Biotechnology and Bioinformatics: Origin, history, aims and scope of biotechnology and<br/>bioinformatics, branches of biotechnology and bioinformatics;Example 100 minipage:25%

Gene structure and information content: Nucleotides and theirs orientation, Promoter sequences, Open reading frames, Introns and Exons, Structural features of RNA: Primary, Secondary, Tertiary Structures.

Protein structure: Primary, secondary and tertiary. Nature of chemical bonds.

# Unit 2Weightage:25%Lectures:12Biological Data Acquisition:Sequencing, PCR, Blotting, Microarrays, Restriction digestion,<br/>Cloning, NGS.

**Databases**: Introduction, Biological databases: Nucleic acid databases (NCBI, DDBJ, and EMBL).Protein databases (Primary, Composite, and Secondary), Specialized Genome databases: (SGD, TIGR, and ACeDB), Structure databases (CATH, SCOP, and PDB sum).

# Unit 3

# Section B Weightage:25%

# Lectures:12

**Sequence Similarity Searches**: Sequence homology as product of molecular evolution; Sequence similarity searches; Significance of sequence alignment.

**Methods of Sequence Alignment**, Dot plots, simple alignments, Alignment scores and gap penalties; Measurement of sequence similarity; Similarity and homology, Multiple sequence alignments – CLUSTAL, Significance of multiple sequence alignment.

# Unit 4

# Weightage:25%

Lectures:12

**Database searches**: BLAST, FASTA, PSI-BLAST algorithms. Phylogenetic trees, Distance based and character based methods of Phylogenetics, Application of phylogenetic analysis. **Visualisation tools**: 3D structure viewers (Rasmol, SPDBv, Chime, Cn3D, PyMol).

**Applied Bioinformatics:** Human genome analysis, Gene therapy, Genetic variability and connections to clinical data, Recombinant pharmaceuticals, Gene Silencing- RNAi, siRNA, miRNA

# **REFERENCES:**

| S.N. | Name of Book                                                | Authors                      |
|------|-------------------------------------------------------------|------------------------------|
| 1    | Genetic Engineering                                         | SmitaRastogi                 |
| 2    | Biotechnology                                               | U. Satyanarayana             |
| 3    | Developing Bioinformatics Computer Skills                   | C. Gibas and P. Jamback.     |
| 4    | Bioinformatics A machine learning approach                  | P. Baldi& S. Brunak          |
| 5    | Bioinformatics: A Practical guide to the analysis of lienes | A. D. Bzxevanis and B. F. F. |
|      | and Proteins                                                | Onellette                    |

# Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Biotechnology Semester 4 BTCT: 402- ENVIRONMENTAL BIOTECHNOLOGY

# **Teaching and Evaluation Scheme:**

| Subject         | Subject Title                  | Credits |      | Theory     Hrs.   Max Marks |          | Total<br>Marks |  |
|-----------------|--------------------------------|---------|------|-----------------------------|----------|----------------|--|
| Code            |                                |         | Hrs. |                             |          |                |  |
|                 |                                |         |      | Mid Term                    | End Term |                |  |
| <b>BTCT 402</b> | Environmental<br>Biotechnology | 4       | 48   | 30                          | 70       | 100            |  |

# **COURSE CONTENTS**

| Unit 1                      | Weightage:25%                                                                                 | Lectures:12                    |
|-----------------------------|-----------------------------------------------------------------------------------------------|--------------------------------|
| <b>Environmental issu</b>   | es: Types of pollution and its measurement.                                                   |                                |
| Air pollution: Type         | es of air pollutants, Effects of air pollution a                                              | nd control by physical and     |
| biological methods          | Climate change: Air pollution and its role in o                                               | climate change. Introduction   |
|                             | rint, Carbon credit Introduction to Kyoto Proto                                               |                                |
|                             | nework Convention on Climate Change (UNF                                                      |                                |
|                             | rs: WHO criteria for microbial indicators, Exar                                               |                                |
| and enumeration of i        |                                                                                               | 1                              |
|                             |                                                                                               |                                |
| Unit 2:                     | Weightage:25%                                                                                 | Lectures:12                    |
| Waste water treatm          | nent: Introduction to waste water treatment .                                                 |                                |
| Preliminary, Prima          | ary, Secondary : Aerobic and anaerobic was                                                    | te water treatment systems,    |
| <b>Tertiary treatment</b>   | systems: Nitrogen removal, Phosphoros remov                                                   | val, removal of microbes       |
|                             | Section B                                                                                     |                                |
| Unit 3                      | Weightage:25%                                                                                 | Lectures:12                    |
| <b>Biofilms:</b> Definition | n, Stage of biofilim development, Microbes in                                                 | volved in Biofilm, Problems    |
|                             | rmation its control method.                                                                   |                                |
|                             |                                                                                               |                                |
|                             | egradation of Xenobiotic in environment: De                                                   | gradation of simple aliphatic, |
| Microbiology of de          | egradation of Xenobiotic in environment: De<br>aromatic hydrocarbons, halogenated hydrocarbon |                                |

| Unit 4                        | Weightage:25%                            | Lectures:12                           |
|-------------------------------|------------------------------------------|---------------------------------------|
| <b>Bioremediation of soli</b> | d waste: Principles of Bioremediation, S | Strategies of bioremediation: In situ |
| and ex situ bioremediati      | on technologies. Phytoremediation. Com   | posting, Vermicomposting.             |

# **REFERENCES:**

| Waste Water Treatment for Pollution Control: | Arceivala.                              |
|----------------------------------------------|-----------------------------------------|
| Environmental Microbiology:                  | R. M. Maier, I. L. Pepper & G. P. Gerba |
| Comprehensive Biotechnology, Vol. 4          | M. Moo-Young (Ed)                       |
| Biotechnology:                               | H.J.Rehm and J.I.Reid (Eds)             |
| Environmental Microbiology and Biotechnology | Singer Samuel                           |
| Biotechnology for Waste and Wastewater       | Nicholas P. Cheremisinoff,              |
| Treatment                                    |                                         |
| Environmental Biotechnology Theory and       | Gareth M. Evans & Judith C. Furlong     |
| Application                                  |                                         |
| Environmental Biotechnology                  | S.N.Jogdand                             |
| Handbook of Environmental Biotechnology      | S.C.Bhatia                              |

| Environmental Biotechnology                       | M.H.Fulekar         |
|---------------------------------------------------|---------------------|
| Environmental Microbiology                        | Pradipta K Mohaptra |
| Microbial Ecology (Fundamentals and applications) | Atlas and Bartha    |

# Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Biotechnology Semester-4 BTCP 403 PRACTICALS

# **Teaching and Evaluation Scheme:**

| Subject         | Subject Title | Credits |      | Practical      |       |      |         | Total |
|-----------------|---------------|---------|------|----------------|-------|------|---------|-------|
| Code            |               |         | Hrs/ | Hrs/ Max Marks |       |      | Marks   |       |
|                 |               |         | week | Experiments    | Spots | Viva | Journal |       |
|                 |               |         |      | & writing      |       |      |         |       |
| <b>BTCP 403</b> | Practicals    | 4       | 8    | 60             | 20    | 10   | 10      | 100   |

List of Experiments: Experiments related to the Theory papers offered in the current semester.

- 1. Bacteriological examination of water particularly for pathogenic microbes
- 2. Isolation of Coliphages from raw sewage
- 3. Detection of Coliform in water by membrane filter method
- 4. Determination of Chemical Oxygen demand of water
- 5. Determination of Dissolved Oxygen of Water
- 6. Determination of Biochemical Oxygen Demand of Water
- 7. Measurement of Total Solids, Suspended Solids and Dissolved Solids in a given sample of Water and Waste Water
- 8. Measurement of Acidity in given Water Sample
- 9. Measurement of Alkalinity of the given Water Sample
- 10. Determination of the Hardness of Water
- 11. Measurement of Sulfate in Water Sample
- 12. Determination of Chlorides concentration (Mohr's method )
- 13. Determination of Orthophosphate
- 14. Short group projects involving, exploring the databases and database types, sequence

searching, comparing presentation of a proteins in various databases, Blast, Multiple sequence alignment etc.

# Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Biotechnology Semster-4 BTDI-404- DISSERTATION /INDUSTRIAL TRAINING

**Teaching and Evaluation Scheme**:

| Subject  | Subject Title | Credits |      | Theory         |      | Total |
|----------|---------------|---------|------|----------------|------|-------|
| Code     |               |         | Hrs. | Hrs. Max Marks |      | Marks |
|          |               |         |      | Mid            | End  |       |
|          |               |         |      | Term           | Term |       |
| BTDI-404 | DISSERTATION/ | 12      |      |                | 300  | 300   |
|          | INDUSTRIAL    |         |      |                |      |       |
|          | TRAINING      |         |      |                |      |       |

• Project work and Dissertation/ Industrial Trainingmust be based on applied aspects of Biotechnology, Microbiology, Pharmaceuticals, Agriculture, Dairy & Food Processing, Environmental Issues and Bioinformatics.

• Semester 4 students will be at Industry / Research Institution / Department for 3 days in a week during entire term for Project Work and Dissertation. The Students have to devote 3 days, 8 hours per day at the work place that may be an Institute, Industry, Department and Hospital Laboratory.

• The Students will have to undergo continuous interaction and one evaluation of progress by a team of Departmental experts. A student who has undergone such evaluations only will be entitled to present his complete project work to the University for Exam.

• The University End Term Practical Examination will be carrying 300 marks divided as underneath and shall be conducted by One external expert along with an Internal expert:

- Thesis Write up : 100 marks
- Thesis Content : 100 marks
- Thesis Presentation : 50 marks
- Viva Voce : 50 marks
- Area of Final Project can be any of the following :
- o Biopharmaceuticals,
- Biofertilizers,
- Biopesticides
- Enzymes
- Biofuels,
- Diagnostic Procedures
- Dairy & Food Processing,
- Tissue Culture
- Bioremediation,
- Bioleaching,
- Pollution Abatement,
- Extremophiles
- Biological Effluent Treatment
- Environmental Issues and
- Bioinformatics.

# Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Biotechnology Semester 4 BTET: 405A-BIOTECHNOLOGY BUSINESS MANAGEMENT

Teaching and Evaluation Scheme: COURSE CONTENT

| Subject | Subject Title          | Credit |                | 7    | Total    |       |
|---------|------------------------|--------|----------------|------|----------|-------|
| Code    |                        | S      | Hrs. Max Marks |      |          | Marks |
|         |                        |        |                | Mid  | End Term |       |
|         |                        |        |                | Term |          |       |
| BTET    | Biotechnology Business | 2      | 24             | 15   | 35       | 50    |
| 405A    | Management             |        |                |      |          |       |

# **COURSE CONTENT**

# Section A

Unit 1No. of Lectures:12Weightage: 25%Biotechnology: Multidisciplinary science, public perception, Biotechnology Companies, Business areas and priorities.

**Evaluating an idea:** Decision on starting a venture; Assessment of feasibility of a given venture/new venture; The Business proposal /Plan.

Accounting and finance: Sources of financial assistance; Funds for capital expenditure and for working (Estimation of income, expenditure, profit, tax etc.), Budget planning, cash flow management and auditing; concepts of balance sheet, Incubators.

# Unit 2: No. of Lectures:- 12

Weightage: 25%

**Marketing:** Market research, Developing distribution channels; Pricing /Competition; Promotion/ Advertising, virtual marketing.

**Human Resource Development (HRD):** Leadership skills; Team building, teamwork; Appraisal. **Intellectual property rights:** Intellectual property rights: Meaning – Classification and forms, Importance of IPRs in the fields of science and technology, Patents – Concepts and principles of Patenting, Types of patents.

**Regulatory approval and compliances** 

# **REFERENCES:**

| Comprehensive Biotechnology                 | KG Ramawat&ShailyGoyal |
|---------------------------------------------|------------------------|
| Economic Analysis of Fermentation Processes | Reissman               |
| Management of Pharmaceutical Industry       |                        |

# Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Biotechnology BTET 405B PROTEOMICS

| Teaching and     | Evaluation Scheme: |       |              |      |      |       |
|------------------|--------------------|-------|--------------|------|------|-------|
| Subject          | Subject Title      | Credi | Theory       |      |      | Total |
| Code             |                    | ts    | Hr Max Marks |      | Mark |       |
|                  |                    |       | s.           | Mid  | End  | s     |
|                  |                    |       |              | Term | Term |       |
| <b>BTET 405B</b> | Proteomics         | 2     | 24           | 15   | 35   | 50    |

# **COURSE CONTENT**

# Unit 1Weightage: 50 % No. of Lectures: 12

**Protein-Protein interactions-** Yeast-two hybrid Assays, Phage display. Fluorescent tagging and FRET microscopy. Protein crystallization: technique and application.

**Mass spectrometry in proteomics** – Principle, techniques, data analysis and applications (MALDI-TOF, LC-MS, MS/MS).Peptide sequencing. Protein Microarray

# Weightage: 50 %No. of Lectures: 12

**Applications of Genomics and Proteomics:** In basic research and medical genetics: Metagenomics, Pharmacogenomics: Overview, concept and application of Individualized Therapy; RNAi: Targeted Medicine and gene silencing. Peptidomics/ Drug discovery, Toxicoproteomics, Biomarkers in disease diagnosis, Identification and characterization of novel proteins.

**Genomics and proteome data analysis**: Public domain databases for NA and proteins (EMBL, GeneBank), Similarity, homology, sequences alignments and genome analysis program (BLAST, FASTA, GCC, ClustalW etc.). ORFs, genes annotation, conserved protein motifs related structure / function analysis (PROSITE, PFAM, Profile Scan, PDB).

# **REFERENCES:**

Unit 2

| S.        | Name of Book                                      | Authors                               |  |  |
|-----------|---------------------------------------------------|---------------------------------------|--|--|
| <b>N.</b> |                                                   |                                       |  |  |
| 1         | Biochemistry                                      | J. M. Berg, J. L. Tymoczko, L. Stryer |  |  |
| 2         | Principles and Techniques of Biochemistry &       | Keith Wilson & John Walker            |  |  |
|           | Mol. Biology                                      |                                       |  |  |
| 3         | The Cell: A Molecular Approach                    | G.M.Cooper&R.E.Hausman                |  |  |
| 4         | Gene IX                                           | Lewin                                 |  |  |
| 5         | Molecular Biology of the Gene                     | Watson et al.                         |  |  |
| 6         | Protein Structure Prediction: Methods and         | Webster, David                        |  |  |
|           | Protocols                                         |                                       |  |  |
| 7         | Bioinformatics: A Practical guide to the Analysis | A. D. Bzxevanis and B. F. F.          |  |  |
|           | of genes and Proteins                             | Onellette                             |  |  |
| 8         | Bioinformatics Methods and protocols:             | S. Misenes and S. A. Krawetz (Eds)    |  |  |
|           | Methods molecular biology Vol. 132                |                                       |  |  |
| 9         | Biopharmaceuticals Biochemistry and               | G. Walsh                              |  |  |
|           | Biotechnology                                     |                                       |  |  |

# Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Biotechnology KADI SARVA VISHWAVIDYALAYA, GANDHINAGAR Department of Biotechnology Question Paper Scheme for Core Theory End Term Examination

Time: 3 hrsDate:Maximum marks: 70SECTION-A

Q.1 Answer all questions. Each question carries 1 mark (10X1=10 Marks) (MCQ. Out of these 5 will be from Unit 1 and 5 will be from Unit 2)

| 1)  |  |  |  |
|-----|--|--|--|
| 2)  |  |  |  |
| 3)  |  |  |  |
| 4)  |  |  |  |
| 5)  |  |  |  |
| 6)  |  |  |  |
| 7)  |  |  |  |
| 8)  |  |  |  |
| 9)  |  |  |  |
| 10) |  |  |  |

Q. 2 Answer all questions. Each question carries 5 marks (2X5=10M)

I) 5M Question (Unit3) or II) 5 M Question (Unit3) III) 5M Question (Unit4) or IV) 5 M Question (Unit4)

Q. 3 Answer any 5 questions. Each question carries 3 marks (5X3=15 Marks) (4 questions from Unit 1 and 4 from Unit 2)

a)
b)
c)
d)
e)
f)
g)
h)

**P.T.O** 

# Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Biotechnology SECTION-B Q.4 Answer all questions. Each question carries 1 mark (10X1=10 Marks)

(MCQ. Out of these 5 will be from Unit 3 and 5 will be from Unit 4)

- 1) 2)
- 3)
- 4)
- --) 5)
- 5) 6)
- 7)
- 8)
- 9)

10)

Q. 5 Answer all questions. Each question carries 5 marks (2X5=10M)

I) 5M Question (Unit3) or II) 5 M Question (Unit3) III) 5M Question (Unit4) or IV) 5 M Question (Unit4)

Q.6 Answer any 5 questions. Each question carries 3 marks (5X3=15 Marks) (4 questions from Unit 3 and 4 questions from Unit 4)

a) b) c) d) e) f) g) h)

\*\*\*\*\*\*\*

| Ka                                                                                                                                            | adi Sarva Vishwavidyalay                                                        | a, Gandhinagar    |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------|--|--|--|--|--|--|
|                                                                                                                                               | CBCS Syllabus of M.Sc. Biotechnology<br>KADI SARVA VISHWAVIDYALAYA, GANDHINAGAR |                   |  |  |  |  |  |  |
| KAD                                                                                                                                           |                                                                                 |                   |  |  |  |  |  |  |
|                                                                                                                                               | Department of Biotech                                                           | nology            |  |  |  |  |  |  |
| Question Paper Scheme for Elective Theory End Term Examination                                                                                |                                                                                 |                   |  |  |  |  |  |  |
| Time: 3 hrs                                                                                                                                   | Date:                                                                           | Maximum marks: 35 |  |  |  |  |  |  |
| Q.1 Answer all questions. Each question carries 1 mark (10X1=10 Marks)<br>(MCQ. Out of these 5 will be from Unit 1 and 5 will be from Unit 2) |                                                                                 |                   |  |  |  |  |  |  |
| 1)                                                                                                                                            |                                                                                 |                   |  |  |  |  |  |  |
| 2)                                                                                                                                            |                                                                                 |                   |  |  |  |  |  |  |
| 3)                                                                                                                                            |                                                                                 |                   |  |  |  |  |  |  |
| 4)                                                                                                                                            |                                                                                 |                   |  |  |  |  |  |  |
| 5)                                                                                                                                            |                                                                                 |                   |  |  |  |  |  |  |
| 6)                                                                                                                                            |                                                                                 |                   |  |  |  |  |  |  |
| 7)                                                                                                                                            |                                                                                 |                   |  |  |  |  |  |  |
| 8)                                                                                                                                            |                                                                                 |                   |  |  |  |  |  |  |

- 9)
- 10)

Q. 2 Answer all questions. Each question carries 5 marks (2X5=10M)

I) 5M Question (Unit3) or II) 5 M Question (Unit3) III) 5M Question (Unit4) or IV) 5 M Question (Unit4)

Q. 3 Answer any 5 questions. Each question carries 3 marks (5X3=15 Marks) (4 questions from Unit 1 and 4 from Unit 2)

a)
b)
c)
d)
e)
f)
g)

\*\*\*\*\*\*\*