

				A 37 A		
	KADI SA	AKVA VISWA		AIA		
	B.Sc. (MATHEN	MATICS), SEI	MESTER-	6 SCHEME		
				Examination		
Subject Code	Course	Instruction	Interna	University	Total	Credi
Subject Code	Course	s Hrs /	1	Exam		t
		week				
CMAT-601	Abstract Algebra-II	3	30	70	100	3
CMAT-602	Mathematical Analysis- II	3	30	70	100	3
CMAT-603	Graph Theory	3	30	70	100	3
CMAT-604	Operations Research- II	3	30	70	100	3
PCMAT-601	Mathematics Practical - IV	12	00	200	200	6
SE Math 601 A	(Discipline Specific Specialization) Business Mathematics- IV	2	50	00	50	2
SE Math 601 B	(Discipline Specific Specialization) Discrete Mathematics- IV					
FCG-601	(Generic Elective) Personality Development & Interview Skills	2	50	00	50	2
EGC- 601	(University Elective) Basic English- VI	2	15	35	50	2
	Total	30	235	515	750	24

B.Sc Mathematics Semester VI

CMAT 601- Abstract Algebra-II

RATIONALE: This course is designed to enable students to acquire basic understanding of the basic concepts of abstract algebra applied to rings and polynomials.

LEARNING OUTCOMES:

- Understand the concept of algebraic structures eg. rings.
- Develop an understanding of polynomials.
- Gain knowledge about the quotient rings and homomorphism.

TEACHING AND EVALUATION SCHEME: The objective of evaluation is not only to measure the performance of students, but also to motivate them for better performance. Students are evaluated on the basis of Mid Term examinations for 30 marks and End Term Examination conducted by University examination for 70 marks.

				Theory		T - 4 - 1
Subject Code	Subject Title	Credits	IIma	Max	Marks	1 otal Marka
			Hrs.	Mid Term	End Term	
CMAT- 601	Abstract Algebra-II	3	48	30	70	100

COURSE CONTENT

Unit I : Rings

Number of Lectures: 15

Definition of a Ring and illustrations, Properties of a Ring, Zero divisors and Integral domain, Characteristic of an Integral Ring, Solution of the equation ax = b in a ring R, Subrings, Ideals

UNIT II : Polynomials

Number of Lectures: 15

Introduction of Polynomials, Integral Domain D[x], Familiar form of Integral domain D[x], Unique factorization of Polynomials, Solutions of a Polynomial Equation, Eisenstein Criterion for irreducibility.

UNIT III: Ideals Number of Lectures: 18 Quotient ring, Homomorphism of rings, Maximal Ideal, Prime Ideal

Weightage: 33%

Weightage: 34%

Weightage: 33%

Reference books:

- 1. Topics in Algebra, I N Herstein, Wiley Eastern Ltd.
- 2. Basic Algebra Vol I & II, N. Jacobson, Hindustan Publishing company
- 3. A text book of Modern Algebra, Shanti Narayan, S.Chand & Co.
- 4. Basics Abstract Algebra, (second Edition), P.B.Bhattacharya, S.K.Jain, S R Nagpal, Cambridge University Press.
- 5. University Algebra, N.S. Gopalkrishna, Wiley Eastern, New Delhi
- 6. Algebra, Maclane Saunders and Birkhoff Garrett MacMillan, New York.
- 7. Introduction to Topology and Modern Analysis, G.F.Simmons, MacGrawHill Inc., U.S.A.

Teaching Instructions:

- 1. Interactions with the students to understand the level of students
- 2. Explaining & discussing mathematics formulas and derivations.
- Teaching the topics included in the syllabus with the help of teaching aids like OHP, LCD (Power point presentation), Notes, Question Banks, References and Reprints / Copy of Articles, Models, Diagrams
- 4. Assistance in solving of questions from our question bank.

UNIT	Examination Scheme %Weightage	Teaching Scheme No. of Lecture
Unit I	34	15
Unit II	33	15
Unit III	33	18
Total	100	48

CMAT 602- Mathematical Analysis-II

RATIONALE: This course is designed to enable students to acquire basic understanding of the basic concepts of differentiation and limits & Continuity.

LEARNING OUTCOMES:

- Understand the concept of limits and continuity for real valued functions
- Develop an understanding of Riemann Integrals
- Gain knowledge about the uniform convergence with differentiation and integration

TEACHING AND EVALUATION SCHEME: The objective of evaluation is not only to measure the performance of students, but also to motivate them for better performance. Students are evaluated on the basis of Mid Term examinations for 30 marks and End Term Examination conducted by University examination for 70 marks.

				Theory		T - 4 - 1
Subject Code	Subject Title	Subject Title Credits		Max Marks		l otal Morks
			пrs.	Mid Term	End Term	IVIAI KS
СМАТ- 602	Mathematical Analysis- II	3	48	30	70	100

COURSE CONTENT

Unit I Number of Lectures: 15 Unit – 1 Functions of Single Variable

Weightage: 34%

Limit and continuity: Limit and continuity for real valued functions, continuity on closed intervals and uniform continuity

Differentiation: Derivative of a real function, monotonic functions, Darboux's theorem, Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, higher order derivatives, indeterminate forms, Taylor's theorem

UNIT II Riemann integral

Number of Lectures: 15

Refinement of partition, Darboux theorem, condition of integrability, Riemann sum, the fundamental theorem of calculus, integration by parts, change of variable in an integral, second mean value theorem

Weightage: 33%

UNIT III Sequence and Series

Number of Lectures: 18

Weightage: 33%

Convergence on real valued functions, point wise convergence, uniform convergence on an interval, test for uniform convergence, uniform convergence and continuity, uniform convergence with integration & differentiation

Reference books:

- 1. Principles of Mathematical Analysis, Walter Rudin, McGraw Hill (International Student Edition), 3rd Edition.
- 2. A First Course in Mathematical Analysis, D. Somasundaram and B. Choudhary, Narosa Publishing House.
- 3. Fundamentals of Mathematical Analysis, G. Das & S. Pattnayak Tata Mcgraw Hill Pub.Co
- 4. Fundamental of Real Analysis, S. L. Gupta & Nisha Rani, Vikas Pub. House Pvt. Ltd. New Delhi-1974.
- 5. Principles of Real Analysis, S.C. Malik, Wiley Eastern Limited New Delhi, 1982.

Teaching Instructions:

- 1. Interactions with the students to understand the level of students
- 2. Explaining & discussing mathematics formulas and derivations.
- Teaching the topics included in the syllabus with the help of teaching aids like OHP, LCD (Power point presentation), Notes, Question Banks, References and Reprints / Copy of Articles, Models, Diagrams
- 4. Assistance in solving of questions from our question bank.

UNIT	Examination Scheme %Weightage	Teaching Scheme No. of Lecture
Unit I	34	15
Unit II	33	15
Unit III	33	18
Total	100	48

CMAT 603- Graph Theory

RATIONALE: This course is designed to enable students to acquire basic understanding of the graph theory, its concepts and applications.

LEARNING OUTCOMES:

- Understand the concept of graph, path
- Develop an understanding of adjacency matrix of a graph
- Know about the real life applications of graph theory

TEACHING AND EVALUATION SCHEME: The objective of evaluation is not only to measure the performance of students, but also to motivate them for better performance. Students are evaluated on the basis of Mid Term examinations for 30 marks and End Term Examination conducted by University examination for 70 marks.

				Theory		T - 4 - 1
Subject Code	Subject Title	Credits	IJma	Max	Marks	1 otai Monko
			Hrs.	Mid Term	End Term	WIATKS
CMAT- 603	Graph Theory	3	48	30	70	100

COURSE CONTENT

Unit I : Graph: Basic Concepts Number of Lectures: 15

Basic Definitions, Finite and Infinite Graphs, Incidence and Degree, Isolated Vertex, Pendant Vertex, Null Graph, Bipartite Graph, Paths and Circuits, Graph Isomorphism, Sub Graphs, A puzzle with Multicoloured Cubes, Graph Operations, Walk, Trail, Paths, Circuits, Connected Graph, Disconnected Graph, Components, Euler Graphs, Hamilton Paths and Circuits, Weighted Graphs.

UNIT II : Trees , Cut Sets, Planar and Dual Graphs Number of Lectures: 15

Trees, Distance and Centres in a Tree, Spanning Trees, Cut set, Connectivity and Separability, Planar Graphs and their different Representation, Kuratowski's Two Graphs, Euler's Formula, Detection of Planarity, Geometric and Combinatorial duals, Vector Space associated with a Graph. Circuit and Cut set Subspaces, Orthogonal Vectors and spaces.

Weightage: 34%

Weightage: 33%

UNIT III: Matrix Representation, Coloring, Covering and Partitioning Number of Lectures: 18

Weightage: 33%

Incidence Matrix, Adjacancy Matrix of a Graph, Path matrix and their relationships, Coloring of a Graph, Chromatic Number, Chromatic Partitioning, Covering, Five Colour Problem, Maximal Independent Set, Directed Graphs, Acyclic digraphs.

REFERENCE BOOKS:

- 1. An Introduction To Discrete Mathematics Udayan M.Prajapati, Dr.Ajay S. Gor, Nirav Prakashan
- 2. Graph Theory with Applications to Engineering and Computer Science, Narsing Deo
- 3. Discrete Mathematical Structures with Applications to Computer Science, Trembley I.P. and Mahonar R.
- 4. Graph Theory, Harry F.
- 5. Graph Theory and its applications, B. Harris
- 6. Discrete Mathematical Structures with applications to Computer Science, R.Hamming and E.A. Feigenbaum
- 7. Discrete Mathematical Structures for Computer Science, B.Kolman and R.C.Busy
- 8. The Essence of Discrete Mathematics, Neville Dean

Teaching Instructions:

- 1. Interactions with the students to understand the level of students
- 2. Explaining & discussing mathematics formulas and derivations.
- 3. Teaching the topics included in the syllabus with the help of teaching aids like OHP, LCD (Power point presentation), Notes, Question Banks, References and Reprints / Copy of Articles, Models, Diagrams
- 4. Assistance in solving of questions from our question bank.

UNIT	Examination Scheme	Teaching Scheme
	%Weightage	No. of Lecture
Unit I	34	15
Unit II	33	18
Unit III	33	15
Total	100	48

CMAT 604- Operations Research- II

RATIONALE: This course is designed to enable students to acquire basic understanding of the Operations research and its various models

LEARNING OUTCOMES:

- Understand the concept of transportation models and assignment problem.
- Develop an understanding of sequencing problems
- Gain knowledge about game theory and dominance principle.

TEACHING AND EVALUATION SCHEME: The objective of evaluation is not only to measure the performance of students, but also to motivate them for better performance. Students are evaluated on the basis of Mid Term examinations for 30 marks and End Term Examination conducted by University examination for 70 marks.

	Theory		7	T - 4 - 1		
Subject Code	Subject Title	Credits	Unc	Max	Marks	I Otal Moreka
			пrs.	Mid Term	End Term	Marks
СРН- 604	Operations Research- II	3	48	30	70	100

COURSE CONTENT

Unit I : Transportation and Assignment Problem

Number of Lectures: 15

Transportation Problem- Introduction, general method of a T.P., unbounded T.P. NWCM, Least cost method, VAM methods to find the initial solution, Dual of a T.P. and MODI method, degeneracy in a T.P., variations in T.P.- Maximization T.P. and prohibited routes.

Assignment Problem- General model of A.P.(A.P. as a special case of a T.P.) Hungarian Method of solving a A.P., variations in a A.P.- maximization, prohibited assignments. Network Models- Concept of Networks.

UNIT II : Sequencing Problem

Number of Lectures: 18

Methods of sequencing, Johnson's Algorithm for a two machine problem, three machine problem and M-machine problem, Processing two jobs through m machines

UNIT III: Game Theory

Number of Lectures: 18

Introduction, Two-person zero games, Minimax and Maximin principles, saddle point theorems, mixed strategies, method for solution of 2×2 game, dominance principles, solution of games

Weightage: 33%

Weightage: 33%

Weightage: 34%

without saddle points by using dominance and then mixed strategies, graphical method of solving $2 \times m$ and $m \times 2$ game, L.P. solution of games.

REFERENCES BOOKS:

- 1. Operations Research, by. J.K.Sharma. Macmillan Publishers India Ltd.
- 2. Operations Research: An Introduction, Hamdy A. Taha
- 3. Operations Research(Principles and Practice) by Pradeep Prabhakar Pai, Oxford University Press.

Teaching Instructions:

- 1. Interactions with the students to understand the level of students
- 2. Explaining & discussing mathematics formulas and derivations.
- 3. Teaching the topics included in the syllabus with the help of teaching aids like OHP, LCD (Power point presentation), Notes, Question Banks, References and Reprints / Copy of Articles, Models, Diagrams
- 4. Assistance in solving of questions from our question bank.

UNIT	Examination Scheme	Teaching Scheme
	%Weightage	No. of Lecture
Unit I	34	15
Unit II	33	15
Unit III	33	18
Total	100	48

PC CMAT IV- Practicals in Mathematics- IV

Objectives:

- Ensure the student can competently use the SCILAB programming environment
- Understand the capabilities of SCILAB for solving complex mathematical problems
- Understand the tools that are essential in solving real-world problems applying appropriate Mathematical concept.

<u>Unit I</u>

Input-Output Statements in SCILAB

Data input, interactive inputs, reading/storing file data, output commands, formatted input-output functions.

<u>Unit II</u>

Programming Techniques

Loops, Branches control structures, **SCILAB** programming, function subprograms, types of functions, function handles, errors and warnings, **SCILAB** debugger.

<u>Unit III</u>

SCILAB Applications:

The content of this unit is to be covered from the list given in Appendix A.

<u>Unit IV</u>

Practical using SCILAB programming

List of practical is given in Appendix B.

Text Book: "SCILAB and its Applications in Engineering", Raj Kumar Bansal, Ashok Kumar Goel, Manoj Kumar Sharma, Pearson.

Appendix A:

Discrete Math**Number theoretic functions Returns Prime factors** Factor factorial Factorial function nchoosek All combinations of N elements taken K at a time All possible permutations perms Returns the greatest common divisor. gcd Returns the least common multiple. lcm Generate list of prime numbers primes Returns a logical array that is prime numbers. isprime Returns a rational fraction approximation. rat, rats mod The mod function is useful for congruence relationships. Returns modulus after Returns remainder after division. rem

Table A.2

cart2sph Transform Cartesian to spherical coordinates	
cart2pol Transform Cartesian to polar coordinates	
pol2cart Transform polar to Cartesian coordinates	
sph2cart Transform spherical to Cartesian coordinates	

Table A.3

Interpolation I	Functions
interp1	Linear and cubic-spline interpolations of a function of one variable.
interp2	Linear interpolation of a function of two variables.
spline	Cubic-spline interpolation.
unmkpp Computes the coefficients of cubic-spine polynomials.	

Table A.4

Numerical Inte	egration Functions
quad	Numerical integration with adaptive Simpson's rule.
quadl	Numerical integration with adaptive Lobatto quadrature.
trapz	Numerical integration with the trapezoidal rule.
quadv	Vectorized quadrature

Table A.1

dblquad	Numerically evaluate double integral
triplequad	Numerically evaluate triple integral
	Table A.5

Numerical Differentiation Functions

diff(x)	Computes the difference between adjacent elements in the vector x.			
polyder	Differentiates a polynomial, a polynomial product, or a polynomial quotient.			
Table A.6				

ODE Solvers

ode23	Nonstiff, low-order solver.
ode45	Nonstiff, medium-order solver.
ode113	Nonstiff, variable-order solver.
ode23s	Stiff, low-order.
ode23t	Moderately stiff, trapezoidal rule solver.
ode23b	Stiff, low-order solver.
ode15s	Stiff, variable-order solver.
odeset	Creates integrator options structure for ODE solvers.
deval	Evaluate solution of differential equation problem
bvp4c	Solve boundary value problems for ODEs

Table A.7

Ontimization	
fminbnd	Finds minimum of single-variable function.
fzero	Finds zero of single-variable function.
fminsearch	Multidimensional unconstrained nonlinear minimization
lsqnonneg	Linear least squares with nonnegativity constraints
fminunc	Find minimum of unconstrained multivariable function
fmincon	Find minimum of constrained nonlinear multivariable function
linprog	Solve linear programming problems

Table A.8

Statistical Fun	ctions
erf(x)	Computes the error function $erf(x)$.
mean	Calculates the average.
median	Calculates the median.

std	Calculates the standard deviation.
var	Calculates the variance.
corrcoef	Correlation coefficients
cov	Covariance matrix

Appendix B:

- 1. Numerical Methods Practical (Lab) using SCILAB programming
- 2. Calculus
- 3. Optimization
- 4. Problems related to programming given in text book.

Assignment: The work should involve programming using SCILAB. The student should submit the electronic copy of .m files or/and diary file showing the execution/output of SCILAB session(s).

Subjective Elective: EMAT- 601A Business Mathematics- IV

RATIONALE: This course is designed to enable students to acquire understanding about the basic principles of business mathematics .

LEARNING OUTCOMES:

- Develop an understanding of the Probability distribution
- Understand the applications of Probability distribution and its importance

TEACHING AND EVALUATION SCHEME: The objective of evaluation is not only to measure the performance of students, but also to motivate them for better performance. Students are evaluated on the basis of Mid Term Examination for 50 marks.

Subject Code	Subject Title		Theory				
		Credits	Credits Hrs.	Max Marks			Total
				Mid Term	Mid Term	End Torm	Marks
				Theory	Viva		
FMAT- 601 A	Business	2	24	20			50
ENIA I - 001 A	Mathematics-IV	2	24	20	30	30	

COURSE CONTENT

Unit:1 : Poisson distribution

Number of lectures: 12

Poisson distribution, Characteristics and Properties of Poisson distribution, Fitting of Poisson distribution

Unit:2 : Normal distribution

Number of lectures: 12

Characteristics and Properties of Normal distribution, Importance of Normal distribution, Conditions under which Binomial and Poisson distribution tends to be a Normal Distribution

Weightage: 50%

Weightage: 50%

Reference books:

- 1. Business Statistics, Dr. P.C. Tulsian & Bharat Jhunjhunwala, S.Chand Publication
- 2. Business Mathematics, D.C. Sancheti & V.K. Kapoor, Sultan Chad & Sons Publication, New Delhi
- 3. Business Mathematics, B.S. Shah Prakashsan, Ahmedabad.

Teaching Instructions:

- 1. Interactions with the students to understand the level of students
- 2. Explaining & discussing mathematics formulas and derivations.
- 3. Teaching the topics included in the syllabus with the help of teaching aids like OHP, LCD (Power point presentation), Notes, Question Banks, References and Reprints / Copy of Articles, Models, Diagrams
- 4. Assistance in solving of questions from our question bank.

UNIT	Examination Scheme	Teaching Scheme
	%Weightage	No. of Lecture
Unit I	50	12
Unit II	50	12
Total	100	24

Subjective Elective: EMAT- 601B Discrete Mathematics- IV

• **RATIONALE:** This course is designed to enable students to acquire understanding of the concepts in Modeling Computation.

			Theory				
Subject Code	Subject Title	Credits	Credits Hrs.	Max Marks			Total
Subject Code				Mid Term	Mid Term Vive	End Term	Marks
	Discrete			Тпсогу	v iva		
EMAT- 601 B	Mathematics- IV	2	24	20	30	•••	50

COURSE CONTENT

Unit-I Weightage: 50% Number of lectures: 12 Weightage: 50% Modeling Computation I: Language and grammars, Types of grammars and languages, Regular sets and regular languages Unit-II Unit-II Weightage: 50% Modeling Computation II: Finite state machines, Machine minimization, Finite state machine as language recognizers, Kleen's theorem (Without proof)

REFERENCES:

- (1) Discrete Mathematics, M.K Gupta, Krishna's Educational Publishers, 13th Edition
- (2) Discrete Mathematical Structures, D.S Malik, M.K Sen, Cengage Learning
- (3) Kenneth H. Rosen, "Discrete mathematics and its applications", 6th edition, Mc Graw Hill International Edition
- (4) Schaum's Outline of Theory and Problems of Discrete Mathematics, Marc Lipson and Seymour Lipschutz

FCG 601-Basic English – VI

RATIONALE: This course is designed tenable students to acquire basic understanding of English grammar. The course would help students to fortify their knowledge of English and strengthen their basic communication abilities.

LEARNING OUTCOMES:

- Understandthefunctionsandusageofsentenceframing, sentencecorrecti on and synthesis the sentences
- Develop language skills of reading through filling in appropriate words in blanks, correcting errors, choosing correct forms, etc.
- AcquireinterestinEnglishlanguageandliteraturethroughtextbooklessons.
- Acquire writing skill through developing story.
- Acquire the speaking skill through speeches.

TEACHING AND EVALUATION SCHEME: The objective of evaluation is not only to measure the performance of students, but also to motivate them for better performance. Students are evaluated on the basis of Mid Term examinations for 15 marks and End Term Examinationconducted by University examination for 35 marks.

Subject Code	Subject Title	Credits	Theory			Total
			Hrs. Max Marks		Marks	
				Mid Term	End Term	
FCG - 602	Basic English –	2	24	15	35	50
	VI					

Unit 1: Number of lectures:8

Weightage 33%

Lesson2:BetweentheMosque Lession7:MyFinancialCareer Lession8:SpeechonIndianIndependence Poem14:TheWorldisTooMuchwithus Poem 15:Success is Counted Sweetest Poem16: I,Too,SingAmerica TheJoyofReadingselectedProse&Poetry

Unit 2:	Grammar Numb	per of lectures: 4	Weightage 17%				
-	- Transformation,Correction(prepositions,Tenses,Concord)						
-	Synthesis ofSentences						
_	Avoiding Common erro	ors in English Grammar					
Unit 3:	Number of lectur	·es:8	Weightage 33%				
	Questionnaire	e (on current Issues i.e.Soc	ial, political, Educational)				
	• Components of	of Questionnaire					
Unit 4	Preparing Speeches	Number of lectures:4	Weightage 17%				
-	Introducing ChiefGues	t					
-	FarwellSpeech						
-	Speech on annualfuncti	ons					
-	MourningtheDeathofV	IP					
-	Speech on RepublicDay	У					

REFERENCES

- 1. HighSchoolEnglishGrammar-Wrenn&Martin
- 2. ContemporaryEnglishGrammar-DavidGreen

INSTRUCTION STRATEGIES

- 1. Interactions with the students to understand the level of students
- 2. Explaining & discussing English language structures.
- Teaching the topics included in the syllabus with the help of teaching aids like OHP, LCD(Powerpointpresentation),Notes,QuestionBanks,ReferencesandRe prints/ Copy of Articles, Models, Diagrams
- 4. Assistance in solving of questions from our question bank.

UNIT	Examination Scheme	Teaching Scheme
Unit 1	33	8
Unit 2	17	4
Unit 3	33	8
Unit 4	17	4
Total	100	24

EGC 601- Personality Development & Interview Skills

RATIONALE: This course is designed to enable students to acquire basic understanding of the components of professional communication, the skills required for the same and practice them.

LEARNING OUTCOMES:

- To build confidence for communicating in English and create interest for the life-long learning of English language
- To describe and characterize spoken English both from the grammatical and the discourse perspectives.
- To draw comparisons between oral and written language through the use of representative oral and written language.

TEACHING AND EVALUATION SCHEME:

The objective of evaluation is not only to measure the performance of students, but also to motivate them for better performance. Students are evaluated on the basis of Mid Term examinations for 15 marks and End Term Examination conducted by University examination for 35marks.

Subject Code	Subject Title	Credits	Theory			
			Hr s.	Max Marks		Total Marks
				Mid Term	End Term	PICINS
EGC- 601	Personality Development & Interview Skills	2	24	50		50

COURSE CONTENT

Unit – I Self De	velopment and Communication:	Number of lectures: 12 Weightage: 50%
	 (a) Professional Etiquettes (b) Goal Setting (c) Time Management (d) Stress Management 	

Unit – IIA.Writing Skills	Number of lectures: 06	Weightage: 25%
(a) Resume	writing (Application Que)	
(b) Report Writing (Application Que)		
(c) E-mail e	etiquettes	
Unit II B. Interview Skills		Weightage: 25%
(a) Types of Interview		
(b) Preparation of an Interview		
(c) Effective a	midelines for an interview	

RECOMMENDED READING:

- 1. V. Sasikumar : A Course in Listening and Speaking I, Cambridge Uni. Press
- 2. G. Taylor:English Conversation Practice, Tata Mcgraw-Hill Publishing Co. Ltd.
- 3. Wrenn&Martin:High School English Grammar & Composition, S, Chand Pub.
- 4. Kumar S and Lata P Communication Skills 2011: New Delhi Oxford University Press

INSTRUCTION STRATEGIES

- 1. Interaction with the students to understand the level of students.
- 2. Teaching the topics included in the syllabus with the help of tool like Power point presentation, Notes, References, Copy of Articles, Models, diagram

UNIT	Examination Scheme %Weightage	Teaching Scheme No. of Lecture
Unit 1	50	12
Unit 2	50	12
Total	100	24